Skip to main content

Developing Active Site Models of ODCase—from Large Quantum Models to a QM/MM Approach

  • Chapter
Orotidine Monophosphate Decarboxylase

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 238))

Abstract

The catalytic mechanism of orotidine monophosphate decarboxylase (ODCase) has been modeled using density functional theory with the B3LYP functional. Barriers for three different mechanisms have been calculated using large QM and QM/MM models. A concerted protonation mechanism where TS stabilization is provided only by the positive Lys93 has a high barrier around 35 kcal/mol. QM/MM calculations confirm the results obtained using QM models. For a base protonation mechanism, O2 protonation gives a barrier for decarboxylation of 26 kcal/mol. Extensions to this QM model indicate that the cost of protonation may be underestimated and the support for the base protonation mechanism is uncertain. An initial QM/MM investigation of a stepwise mechanism, where water molecules seem to play an important role for TS stabilization, gives the most promising results with an estimated barrier of 22 kcal/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

DFT :

Density functional theory

MM :

Molecular mechanics

OMP :

Orotidine 5′-monophosphate

ODCase :

Orotidine 5′-monophosphate decarboxylase

QM :

Quantum mechanics

QM/MM :

Quantum mechanics/molecular mechanics

TS :

Transition state

References

  1. Radzicka A, Wolfenden R (1995) Science 267:90–92

    Google Scholar 

  2. Shostak K, Jones ME (1992) Biochemistry 31:12155–12161

    Google Scholar 

  3. Cui W, DeWitt JG, Miller SM, Wu W (1999) Biochem Biophys Res Comm 259:133–135

    Google Scholar 

  4. Miller BG, Smiley JA, Short SA, Wolfenden R (1999) J Biol Chem 274:23841–23843

    Google Scholar 

  5. Beak P, Siegel B (1976) J Amer Chem Soc 98:3601–3605

    Google Scholar 

  6. Lee JK, Houk KN (1997) Science 276:942–945

    Google Scholar 

  7. Lee T-S, Chong LT, Chodera JD, Kollman PA (2001) J Amer Chem Soc 123:12837–12848

    Google Scholar 

  8. Becke AD (1993) J Chem Phys 98:1372–1377

    Google Scholar 

  9. Becke AD (1993) J Chem Phys 98:5648–5652

    Google Scholar 

  10. Traut TW, Temple BRS (2000) J Biol Chem 275:28675–28681

    Google Scholar 

  11. Appleby TC, Kinsland C, Begley TP, Ealick SE (2000) Proc Natl Acad Sci USA 97:2005–2010

    Google Scholar 

  12. Miller BG, Hassell AM, Wolfenden R, Milburn MV, Short SA (2000) Proc Natl Acad Sci USA 97:2011–2016

    Google Scholar 

  13. Wu N, Mo Y, Gao J, Pai EF (2000) Proc Natl Acad Sci USA 97:2017–2022

    Google Scholar 

  14. Harris P, Poulsen J-CN, Jensen KF, Larsen S (2000) Biochemistry 39:4217–4224

    Google Scholar 

  15. Miller BG, Snider MJ, Wolfenden R, Short SA (2001) J Biol Chem 276:15174–15176

    Google Scholar 

  16. Miller BG, Butterfoss GL, Short SA, Wolfenden R (2001) Biochemistry 40:6227–6232

    Google Scholar 

  17. Porter DJT, Short SA (2000) Biochemistry 39:11788–11800

    Google Scholar 

  18. Siegbahn PEM (2003) Quart Rev Biophys 36:91–145

    Google Scholar 

  19. Siegbahn PEM, Blomberg MRA (2000) Chem Rev 100:421–437

    Google Scholar 

  20. Siegbahn PEM, Blomberg MRA (2001) J Phys Chem 105:9375–93864

    Google Scholar 

  21. Lundberg M, Blomberg MRA, Siegbahn PEM (2002) J Mol Model 8:119–130

    Google Scholar 

  22. Curtiss LA, Raghavachari K, Redfern RC, Pople JA (2000) J Chem Phys 112:7374–7383

    Google Scholar 

  23. Froese RDJ, Humbel S, Svensson M, Morokuma K (1997) J Phys Chem A 101:227–233

    Google Scholar 

  24. Siegbahn PEM (2001) Theor Chem Acc 105:197–206

    Google Scholar 

  25. Dunning TH Jr, Hay PJ (1976) Gaussian basis sets for molecular calculations. In: Schaefer HF (ed) Methods of electronic structure theory: Modern theoretical chemistry, vol 3. Plenum, New York, pp 1–28

    Google Scholar 

  26. Siegbahn PEM (1996) Electronic structure calculations for molecules containing transition metals. In: Prigogine I, Rice SA (eds) New methods in computational quantum mechanics: Advances in chemical physics, vol XCIII. Wiley, New York, pp 333–387

    Google Scholar 

  27. Schrödinger Inc. (1991–2000) Jaguar 4.1. Schrödinger, Portland, OR

    Google Scholar 

  28. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratman RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu C, Liashenko A, Piskorz P, Komaromi, I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Gonzales C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98. Gaussian, Pittsburgh PA

    Google Scholar 

  29. Wiberg KB, Rablen PR, Rush DJ, Keith TA (1995) J Am Chem Soc 117:4261–4270

    Google Scholar 

  30. Wiberg KB, Keith TA, Frisch MJ, Murcko M (1995) J Phys Chem 99:9072–9079

    Google Scholar 

  31. Klamt A, Schuurmann G (1993) J Chem Soc Perk T 25:799–805

    Google Scholar 

  32. Barone V, Cossi M (1998) J Phys Chem A 102:1995–2001

    Google Scholar 

  33. Tannor DJ, Marten B, Murphy R, Friesner RA, Sitkoff D, Nicholls A, Ringnalda M, Goddard III WA, Honig B (1994) J Am Chem Soc 116:11875–11882

    Google Scholar 

  34. Schrödinger Inc. (2002) Qsite, FirstDiscovery Suite v2.0. Schrodinger, Portland, OR

    Google Scholar 

  35. Murphy RB, Philipp DM, Friesner RA (2000) Chem Phys Lett 321:113–120

    Google Scholar 

  36. Murphy RB, Philipp DM, Friesner RA (2000) J Comp Chem 21:1442–1457

    Google Scholar 

  37. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) J Am Chem Soc 118:11225–11236

    Google Scholar 

  38. Warshel A, Ŝtrajbl M, Villà J, Florián J (2000) Biochemistry 39:14728–14738

    Google Scholar 

  39. Singleton DA, Merrigan SR, Kim BJ, Beak P, Phillips LM, Lee JK (2000) J Am Chem Soc 122:3296–3300

    Google Scholar 

  40. Smiley, JA, Paneth P, O’Leary MH, Bell JB, Jones ME (1991) Biochemistry 30:6216–6223

    Google Scholar 

  41. Rishavy MA, Cleland WW (2000) Biochemistry 39:4569–4575

    Google Scholar 

  42. Phillips LM, Lee JK (2001) J Am Chem Soc 123:12067–12073

    Google Scholar 

  43. Smiley JA, Saleh L (1999) Bioorg Chem 27:297–306

    Google Scholar 

  44. Smiley JA, Hay KM, Levison BS (2001) Bioorg Chem 29:96–106

    Google Scholar 

  45. Miller BG, Snider MJ, Short SA, Wolfenden R (2000) Biochemistry 39:8113–8118

    Google Scholar 

  46. Miller BG, Traut TW, Wolfenden R (1998) Bioorg Chem 26:283–288

    Google Scholar 

  47. Warshel A, Florián J (1998) Proc Natl Acad Sci USA 95:5950–5955

    Google Scholar 

  48. Warshel A (1998) J Biol Chem 273:27035–27038

    Google Scholar 

  49. Villà J, Warshel A (2001) J Phys Chem B 105:7887–7907

    Google Scholar 

  50. Houk KN, Lee JK, Tantillo DJ, Bahmanyar S, Hietbrink BN (2001) Chem Bio Chem 2:113–118

    Google Scholar 

  51. Miller BG, Wolfenden R (2002) Annu Rev Biochem 71:847–885

    Google Scholar 

  52. Hur S, Bruice TC (2002) Proc Natl Acad Sci USA 99:9668–9673

    Google Scholar 

Download references

Acknowledgments

We would like to thank Arieh Warshel and Marek Ŝtrajbl for kindly providing their structures of the ODCase reactants and intermediates. We would also like to thank the National Supercomputer Center (Sweden) for a generous grant of computer time at the SGI3800.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Lundberg .

Editor information

J.K. Lee

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Lundberg, M., Blomberg, M.R.A., Siegbahn, P.E.M. Developing Active Site Models of ODCase—from Large Quantum Models to a QM/MM Approach. In: Lee, J. (eds) Orotidine Monophosphate Decarboxylase. Topics in Current Chemistry, vol 238. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b94540

Download citation

  • DOI: https://doi.org/10.1007/b94540

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20566-1

  • Online ISBN: 978-3-540-40039-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics