Advertisement

Lie Group Representations on Polynomial Rings

  • Bertram Kostant
Chapter

Abstract

Let G be a group of linear transformations on a finite dimensional real or complex vector space X. Assume X is completely reducible as a G-module. Let S be the ring of all complex-valued polynomials on X, regarded as a G-module in the obvious way, and let J ? S be the sub-ring of all G-invariant polynomials on X.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Borel and Harish-Chandra, “Arithmetic subgroups of algebraic groups,” Annals of Mathematics, vol. 75 (1962), pp. 485–535.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    C. Chevalley, “Invariants of finite groups generated by reflections,” American Journal of Mathematics, vol. 77 (1955), pp. 778–782.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    C. Chevalley, Fondéments de la géométrie algébrique, Course notes at the Institut Henri Poincaré, Paris, 1958.zbMATHGoogle Scholar
  4. [4]
    A. J. Coleman, “The Betti numbers of the simple Lie groups,” Canadian Journal of Mathematics, vol. 10 (1958), pp. 349–356.CrossRefzbMATHGoogle Scholar
  5. [5]
    E. B. Dynkin, “Semi-simple subalgebras of semi-simple Lie algebras,” American Mathematical Society Translations, ser. 2, vol. 6 (1957), pp. 111–244.zbMATHGoogle Scholar
  6. [6]
    F. Gantmacher, “Canonical representation of automorphisms of a complex semi-simple Lie group,” Matemati?eski ? Sbornik, vol. 47 (1939), pp. 104–146.Google Scholar
  7. [7]
    Harish-Chandra, “On a lemma of Bruhat,” Journal de Mathématiques Pures et Appliquées, vol. 9, 315 (1956), pp. 203’210.MathSciNetGoogle Scholar
  8. [8]
    Harish-Chandra, “On representations of Lie algebras,” Annals of Mathematics, vol. 50 (1949), pp. 900–915.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    G. Hochschild and G. D. Mostow, “Representations and representative functions on Lie groups, III,” Annals of Mathematics (2), vol. 70 (1959), pp. 85–100.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    S. Helgason, “Some results in invariant theory,” Bulletin of the American Mathematical Society, vol. 68 (1962), pp. 367–371.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    N. Jacobson, “Completely reducible Lie algebras of linear transformations,” Proceedings of the American Mathematical Society, vol. 2 (1951), pp. 105–133.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    B. Kostant, “A formula for the multiplicity of a weight,” Transactions of the American Mathematical Society, vol. 9 (1959), pp. 53–73.MathSciNetCrossRefGoogle Scholar
  13. [13]
    B. Kostant, “The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group,” American Journal of Mathematics, vol. 81 (1959), pp. 973–1032.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    M. Rosenlicht, “On quotient varieties and the affine embedding of certain homogeneous spaces,” Transactions of the American Mathematical Society, vol. 101 (1961), pp. 211–223.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    J. P. Serre, “Faisceaux algébriques cohérent,” Annals of Mathematics, vol. 61 1955), pp. 197–278.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    A. Seidenberg, “The hyperplane sections of normal varieties,” Transactions of the American Mathematical Society, vol. 64 (1950), pp. 357–386.MathSciNetCrossRefGoogle Scholar
  17. [17]
    R. Steinberg, “Invariants of finite reflection groups,” Canadian Journal of Mathematics, vol. 12 (1960), pp. 616–618.CrossRefzbMATHGoogle Scholar
  18. [18]
    O. Zariski and P. Samuel, Commutative Algebra, vol. I, van Nostrand Company, Princeton, 1958.zbMATHGoogle Scholar
  19. [19]
    O. Zariski and P. Samuel, Commutative Algebra, vol. II, van Nostrand Company, Princeton, 1960.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag New York 2009

Authors and Affiliations

  1. 1.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations