Charge Transport in DNA-Based Devices

  • Danny Porath
  • Gianaurelio Cuniberti
  • Rosa Di Felice
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 237)


Charge migration along DNA molecules has attracted scientific interest for over half a century. Reports on possible high rates of charge transfer between donor and acceptor through the DNA, obtained in the last decade from solution chemistry experiments on large numbers of molecules, triggered a series of direct electrical transport measurements through DNA single molecules, bundles, and networks. These measurements are reviewed and presented here. From these experiments we conclude that electrical transport is feasible in short DNA molecules, in bundles and networks, but blocked in long single molecules that are attached to surfaces. The experimental background is complemented by an account of the theoretical/computational schemes that are applied to study the electronic and transport properties of DNA-based nanowires. Examples of selected applications are given, to show the capabilities and limits of current theoretical approaches to accurately describe the wires, interpret the transport measurements, and predict suitable strategies to enhance the conductivity of DNA nanostructures.


Molecular electronics Biomolecular nanowires Conductance Bandstructure Direct electrical transport 


Ade (A)


Cyt (C)


Gua (G)


Thy (T)





Atomic force microscope


Becke–Lee–Yang–Parr (GGA)


Brillouin zone


Carbon nanotube


Density functional theory


Density of states


Electrostatic force microscope


Generalized gradient approximation




Highest occupied molecular orbital


Local density approximation


Low-energy electron point source


Lowest unoccupied molecular orbital


Møller–Plesset 2nd order


Nuclear magnetic resonance


Perdew–Burke–Ernzerhof (GGA)


Scanning electron microscope


Scanning force microscope


Scanning tunneling microscope


Tight binding


Transmission electron microscope


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Funding by the EU through grant FET-IST-2001-38951 is acknowledged. DP is thankful to Cees Dekker and his group, with whom experiment [14] was done, to Joshua Jortner, Avraham Nitzan, Julio Gomez-Herrrero, Christian Schönenberger, and Hezy Cohen for fruitful discussions about the conductivity in DNA and critical reading of the manuscript. DP research is funded by: The First foundation, The Israel Science Foundation, The German-Israel Foundation, and Hebrew University Grants. GC acknowledges the collaboration with Luis Craco with whom part of the work reviewed was done. The critical reading of Miriam del Valle, Rafael Gutierrez, and Juyeon Yi is also gratefully acknowledged. GC research has been funded by the Volkswagen Foundation. RDF is extremely grateful to Arrigo Calzolari, Anna Garbesi, and Elisa Molinari for fruitful collaborations and discussions on topics related to this chapter, and for a critical reading of the manuscript. RDF research is funded by INFM through PRA-SINPROT, and through the Parallel Computing Committee for allocation of computing time at CINECA, and by MIUR through FIRB-NOMADE.


  1. 1.
    Luryi S, Xu J, Zaslavsky A (1999) (eds) Future trends in microelectronics: the road ahead. Wiley, New YorkGoogle Scholar
  2. 2.
    Joachim C, Gimzewski JK, Aviram A (2000) Nature 408:541Google Scholar
  3. 3.
    Aviram A, Ratner MA (1998) (eds) Molecular electronics science and technology. Annals of the New York Academy of Sciences, vol 852. The New York Academy of Sciences, New YorkGoogle Scholar
  4. 4.
    Aviram A, Ratner MA, Mujica V (2002) (eds) Molecular electronics II. Annals of the New York Academy of Sciences, vol 960. The New York Academy of Sciences, New YorkGoogle Scholar
  5. 5.
    Tour JM (2000) Acc Chem Res 33:791Google Scholar
  6. 6.
    Aviram A, Ratner MA (1974) Chem Phys Lett 29:277Google Scholar
  7. 7.
    Metzger RM (1999) Acc Chem Res 9:2027Google Scholar
  8. 8.
    Collier CP, Wong EW, Bolohradsky M, Raymo FM, Stoddart JF, Kuekes PJ, Williams RS, Heath JR (1999) Science 285:391Google Scholar
  9. 9.
    Reed MA, Zhou C, Muller CJ, Burgin TP, Tour JM (1997) Science 278:252Google Scholar
  10. 10.
    Collier CP, Mattersteig G, Wong EW, Luo Y, Beverly K, Sampario J, Raymo FM, Stoddart JF, Heath JR (2001) Science 289:1172Google Scholar
  11. 11.
    Chen J, Reed MA (2002) Chem Phys 281:127Google Scholar
  12. 12.
    Braun E, Eichen Y, Sivan U, Ben-Yoseph G (1998) Nature 391:775Google Scholar
  13. 13.
    Keren K, Krueger M, Gilad R, Ben-Yoseph G, Sivan U, Braun E (2002) Science 297:72Google Scholar
  14. 14.
    Porath D, Bezryadin A, de Vries S, Dekker C (2000) Nature 403:635Google Scholar
  15. 15.
    Rinaldi R, Biasco A, Maruccio G, Cingolani R, Alliata D, Andolfi L, Facci P, De Rienzo F, Di Felice R, Molinari E (2002) Adv Mater 14:1453Google Scholar
  16. 16.
    Rinaldi R, Biasco A, Maruccio G, Arima V, Visconti P, Cingolani R, Facci P, De Rienzo F, Di Felice R, Molinari E, Verbeet MP, Canters GW (2003) Appl Phys Lett 82:472Google Scholar
  17. 17.
    Rinaldi R, Branca E, Cingolani R, Di Felice R, Calzolari A, Molinari E, Masiero S, Spada G, Gottarelli G, Garbesi A (2002) Ann N Y Acad Sci 960:184Google Scholar
  18. 18.
    Alberti P, Mergny J-L (2003) Proc Natl Acad Sci USA 100:1569Google Scholar
  19. 19.
    Benenson Y, Paz-Elizur T, Adar R, Keinan E, Livneh Z, Shapiro E (2001) Nature 414:430Google Scholar
  20. 20.
    Benenson Y, Adar R, Paz-Elizur T, Livneh Z, Shapiro E (2003) Proc Natl Acad Sci USA 100:2191Google Scholar
  21. 21.
    Porath D, Millo O (1997) J Appl Phys 81:2241Google Scholar
  22. 22.
    Lemay SG, Janssen JW, van den Hout M, Mooji M, Bronikowski MJ, Willis PA, Smalley RE, Kouwenhoven LP, Dekker C (2001) Nature 412:617Google Scholar
  23. 23.
    Liang W, Shores MP, Bockrath M, Long JR, Park H (2002) Nature 417:725Google Scholar
  24. 24.
    Thorwart M, Grifoni M, Cuniberti G, Postma HWC, Dekker C (2002) Phys Rev Lett 89:196402Google Scholar
  25. 25.
    Lehn JM (1990) Angew Chem Int Ed 29:1304Google Scholar
  26. 26.
    Di Mauro E, Hollenberg CP (1993) Adv Mat 5:384Google Scholar
  27. 27.
    Niemeyer CM (1997) Angew Chem Int Ed 36:585Google Scholar
  28. 28.
    Niemeyer CM (2001) Angew Chem Int Ed 40:4128Google Scholar
  29. 29.
    Chen J, Seeman NC (1991) Nature 350:631Google Scholar
  30. 30.
    Zhang Y, Seeman NC (1994) J Am Chem Soc 116:1661Google Scholar
  31. 31.
    La Bean T, Yan H, Kopatsch J, Liu F, Winfree E, Reif JH, Seeman NC (2000) J Am Chem Soc 122:1848Google Scholar
  32. 32.
    Seeman NC (2001) Nano Lett 1:22Google Scholar
  33. 33.
    Zhang Y, Austin RH, Kraeft J, Cox EC, Ong NP (2002) Phys Rev Lett 89:198102Google Scholar
  34. 34.
    Dekker C, Ratner MA (2001) Phys World 14:29Google Scholar
  35. 35.
    Eley DD, Spivey DI (1962) Trans Faraday Soc 12:245Google Scholar
  36. 36.
    Warman JM, de Haas MP, Rupprecht A (1996) Chem Phys Lett 249:319Google Scholar
  37. 37.
    O’Neill P, Fielden EM (1993) Adv Radiat Biol 17:53Google Scholar
  38. 38.
    Retèl J, Hoebee B, Braun JEF, Lutgerink JT, van den Akker E, Wanamarta AH, Joenjie H, Lafleur MVM (1993) Mutation Res 299:165Google Scholar
  39. 39.
    Turro NJ, Barton JK (1998) J Biol Inorg Chem 3:201Google Scholar
  40. 40.
    Lewis FD, Wu T, Liu X, Letsinger RL, Greenfield SR, Miller SE, Wasielewski MR (2000) J Am Chem Soc 122:2889Google Scholar
  41. 41.
    Murphy CJ, Arkin MA, Jenkins Y, Ghatlia ND, Bossman S, Turro NJ, Barton JK (1993) Science 262:1025Google Scholar
  42. 42.
    Hall DB, Holmlin RE, Barton JK (1996) Nature 382:731Google Scholar
  43. 43.
    Kelley SO, Jackson NM, Hill MG, Barton JK (1999) Angew Chem Int Ed 38:941Google Scholar
  44. 44.
    Grinstaff MW (1999) Angew Chem Int Ed 38:3629Google Scholar
  45. 45.
    Barbara PF, Olson EJC (1999) Adv Chem Phys 107:647Google Scholar
  46. 46.
    Bixon M, Giese B, Wessely S, Langenbacher T, Michel-Beyerle ME, Jortner J (1999) Proc Natl Acad Sci USA 96:11713Google Scholar
  47. 47.
    Schuster GB (2000) Acc Chem Res 33:253Google Scholar
  48. 48.
    Conwell EM, Rakhmanova SV (2000) Proc Natl Acad Sci USA 97:4556Google Scholar
  49. 49.
    Okahata Y, Kobayashi T, Tanaka K, Shimomura M (1998) J Am Chem Soc 120:6165Google Scholar
  50. 50.
    Fink HW, Schönenberger C (1999) Nature 398:407Google Scholar
  51. 51.
    Nitzan A (2001) J Phys Chem A 105:2677Google Scholar
  52. 52.
    Meggers E, Michel-Beyerle ME, Giese B (1998) J Am Chem Soc 120:12950Google Scholar
  53. 53.
    Giese B, Amaudrut J, Köhler AK, Spormann M, Wessely S (2001) Nature 412:318Google Scholar
  54. 54.
    Davis WB, Naydenova I, Haselbeger R, Ogrodnik A, Giese B, Michel-Beyerle ME (2000) Angew Chem Int Ed 39:3649Google Scholar
  55. 55.
    Giese B (2002) Curr Opin Chem Biol 6:612Google Scholar
  56. 56.
    O’Neill MA, Barton JK (2002) Proc Natl Acad Sci USA 99:16543Google Scholar
  57. 57.
    Henderson PT, Jones D, Hampikian G, Kan Y, Schuster G (1999) Proc Natl Acad Sci USA 96:8353Google Scholar
  58. 58.
    de Pablo PJ, Moreno-Herrero F, Colchero J, Gómez Herrero J, Herrero P, Baró AM, Ordejón P, Soler JM, Artacho E (2000) Phys Rev Lett 85:4992Google Scholar
  59. 59.
    Storm AJ, van Noort J, de Vries S, Dekker C (2001) Appl Phys Lett 79:3881Google Scholar
  60. 60.
    Kasumov AY, Kociak M, Guéron S, Reulet B, Volkov VT, Klinov DV, Bouchiat H (2001) Science 291:280Google Scholar
  61. 61.
    Watanabe H, Manabe C, Shigematsu T, Shimotani K, Shimizu M (2001) Appl Phys Lett 79:2462Google Scholar
  62. 62.
    Shigematsu T, Shimotani K, Manabe C, Watanabe H, Shimizu M (2003) J Chem Phys 118:4245Google Scholar
  63. 63.
    Bezryadin A, Dekker C (1997) J Vac Sci Technol 15:793Google Scholar
  64. 64.
    Bezryadin A, Dekker C, Schmid G (1997) Appl Phys Lett 71:1273Google Scholar
  65. 65.
    Bockrath M, Markovic N, Shepard A, Tinkham M, Gurevich L, Kouwenhoven LP, Wu MW, Sohn LL (2002) Nano Lett 2:187Google Scholar
  66. 66.
    Gómez-Navarro C, Moreno-Herrero F, de Pablo PJ, Colchero J, Gómez-Herrero J, Baró AM (2002) Proc Natl Acad Sci USA 99:8484Google Scholar
  67. 67.
    Cai L, Tabata H, Kawai T (2000) Appl Phys Lett 77:3105Google Scholar
  68. 68.
    Rinaldi R, Branca E, Cingolani R, Masiero S, Spada GP, Gottarelli G (2001) Appl Phys Lett 78:3541Google Scholar
  69. 69.
    Lee HY, Tanaka H, Otsuka Y, Yoo K-H, Lee J-O, Kawai T (2002) Appl Phys Lett 80:1670Google Scholar
  70. 70.
    Tabata H, Cai LT, Gu J-H, Tanaka S, Otsuka Y, Sacho Y, Taniguchi M, Kawai T (2003) Synth Met 133:469Google Scholar
  71. 71.
    Rakitin A, Aich P, Papadopoulos C, Kobzar Y, Vedeneev AS, Lee JS, Xu JM (2001) Phys Rev Lett 86:3670Google Scholar
  72. 72.
    Aich P, Labiuk SL, Tari LW, Delbaere LJT, Roesler WJ, Falk KJ, Steer RP, Lee JS (1999) J Mol Biol 294:477Google Scholar
  73. 73.
    Wettig SD, Wood DO, Lee JS (2003) J Inorg Biochem 94:94Google Scholar
  74. 74.
    Li C-Z, Long Y-T, Kraatz H-B, Lee JS (2003) J Phys Chem B 107:2291Google Scholar
  75. 75.
    Yoo K-H, Ha DH, Lee J-O, Park JW, Kim J, Kim JJ, Lee H-Y, Kawai T, Choi HY (2001) Phys Rev Lett 87:198102Google Scholar
  76. 76.
    Jortner J (1976) J Chem Phys 64:4860Google Scholar
  77. 77.
    Marcus R, Sutin N (1985) Biochem Biophys Acta 811:265Google Scholar
  78. 78.
    Bixon M, Jortner J (2001) J Am Chem Soc 123:12556Google Scholar
  79. 79.
    Jortner J, Bixon M, Langenbacher T, Michel-Beyerle ME (1998) Proc Natl Acad Sci USA 95:12759Google Scholar
  80. 80.
    Bixon M, Jortner J (2000) J Phys Chem B 104:3906Google Scholar
  81. 81.
    Landauer R (1957) IBM J Res Develop 1:223, reprinted (1996) J Math Phys 37:5259Google Scholar
  82. 82.
    Datta S (1995) Electronic transport in mesoscopic systems. Cambridge University Press, CambridgeGoogle Scholar
  83. 83.
    Ferry DK, Goodnick SM (1999) Transport in nanostructures. Cambridge University Press, CambridgeGoogle Scholar
  84. 84.
    Xue Y, Datta S, Ratner MA (2002) Chem Phys 281:151Google Scholar
  85. 85.
    Calzolari A, Souza I, Marzari N, Buongiorno Nardelli M (2003) (preprint)Google Scholar
  86. 86.
    Brandbyge M, Mozos J-L, Ordejón P, Taylor J, Sokbro K (2002) Phys Rev B 65:165401Google Scholar
  87. 87.
    Gutierrez R, Fagas G, Cuniberti G, Grossmann F, Schmidt R, Richter K (2002) Phys Rev B 65:113410Google Scholar
  88. 88.
    Šponer J, Leszczynski J, Hobza P (1996) J Phys Chem 100:1965Google Scholar
  89. 89.
    Šponer J, Leszczynski J, Hobza P (1996) J Phys Chem 100:5590Google Scholar
  90. 90.
    Di Felice R, Calzolari A, Molinari E, Garbesi A (2002) Phys Rev B 65:045104Google Scholar
  91. 91.
    Calzolari A, Di Felice R, Molinari E, Garbesi A (2002) Physica E 13:1236Google Scholar
  92. 92.
    Adessi C, Walch S, Anantram MP (2003) Phys Rev B 67:081405(R)Google Scholar
  93. 93.
    Calzolari A, Di Felice R, Molinari E, Garbesi A (2002) Appl Phys Lett 80:3331Google Scholar
  94. 94.
    Gervasio FR, Carloni P, Parrinello M (2002) Phys Rev Lett 89:108102Google Scholar
  95. 95.
    Barnett RN, Cleveland CL, Joy A, Landmann U, Schuster GB (2001), Science 294:567Google Scholar
  96. 96.
    Dreizler RM, Gross EKU (1990) Density functional theory. An approach to the quantum many-body problem. Springer, Berlin Heidelberg New YorkGoogle Scholar
  97. 97.
    Hohenberg P, Kohn W (1964) Phys Rev 136:B864Google Scholar
  98. 98.
    Kohn W, Sham LJ (1965) Phys Rev 140:A1133Google Scholar
  99. 99.
    Becke ADA (1988) Phys Rev A 38:3098Google Scholar
  100. 100.
    Perdew JP, Chvary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671Google Scholar
  101. 101.
    Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37:785Google Scholar
  102. 102.
    Becke ADA (1993) J Chem Phys 98:1372Google Scholar
  103. 103.
    Becke ADA (1993) J Chem Phys 98:5648Google Scholar
  104. 104.
    Johnson BG, Gill PMW, Pople JA (1993) J Chem Phys 98:5612Google Scholar
  105. 105.
    Cuniberti G, Großmann F, Gutiérrez R (2002) Adv Solid State Phys 42:133Google Scholar
  106. 106.
    Saito R, Dresselhaus MS, Dresselhaus G (1998) Physical properties of carbon nanotubes. World Scientific, SingaporeGoogle Scholar
  107. 107.
    Elstner M, Hobza P, Frauenheim T, Suhai S, Kaxiras E (2001) J Chem Phys 114:5149Google Scholar
  108. 108.
    Voityuk AA, Jortner J, Bixon M, Rösch N (2000) Chem Phys Lett 324:430Google Scholar
  109. 109.
    Voityuk AA, Rösch N, Bixon M, Jortner J (2000) J Phys Chem B 104:9740Google Scholar
  110. 110.
    Voityuk AA, Jortner J, Bixon M, Rösch N (2002) J Chem Phys 114:5614Google Scholar
  111. 111.
    Bogár F, Ladik J (1998) Chem Phys 237:273Google Scholar
  112. 112.
    Ye Y, Chen RS, Martinez A, Otto P, Ladik J (1999) Solid State Commun 112:139Google Scholar
  113. 113.
    Friesner RA, Dunietz BD (2001) Acc Chem Res 34:351Google Scholar
  114. 114.
    Artacho E, Machado M, Sánchez-Portal D, Ordejón P, Soler JM (2002) airXiV:cond-mat/0209563 (to be published in Mol Phys)Google Scholar
  115. 115.
    Hjort M, Stafström S (2001) Phys Rev Lett 87:228101Google Scholar
  116. 116.
    Gottarelli G, Masiero S, Mezzina E, Spada GP, Mariani P, Recanatini M (1998) Helv Chim Acta 81:2078Google Scholar
  117. 117.
    Artacho E, Sánchez-Portal D, Ordejón P, García A, Soler JM (1999) Phys Status Solidi B 215:809Google Scholar
  118. 118.
    Phillips K, Dauter Z, Morchie AIH, Lilley DMJ, Luisi B (1997) J Mol Biol 273:171Google Scholar
  119. 119.
    Tanaka K, Yamada Y, Shionoya M (2002) J Am Chem Soc 124:8802Google Scholar
  120. 120.
    Tanaka K, Tengeiji A, Kato T, Toyama N, Shionoya M (2003) Science 299:1212Google Scholar
  121. 121.
    Carloni P, Andreoni W (1996) J Phys Chem 100:17797Google Scholar
  122. 122.
    Cuniberti G, Craco L, Porath D, Dekker C (2002) Phys Rev B 65:241314(R)Google Scholar
  123. 123.
    Zwolak M, Di Ventra M (2002) Appl Phys Lett 81:925Google Scholar
  124. 124.
    Li XQ, Yan Y (2001) Appl Phys Lett 79:2190Google Scholar
  125. 125.
    Li XQ, Yan Y (2001) J Chem Phys 115:4169Google Scholar
  126. 126.
    Imry Y (2002) Introduction to mesoscopic physics, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  127. 127.
    Fisher DS, Lee PA (1981) Phys Rev B 23:R6851Google Scholar
  128. 128.
    Jauho AP (2003) Nonequilibrium Green function modeling of transport in mesoscopic systems. In: Bonitz M, Semkat D (eds) Progress in nonequilibrium Green’s functions II. World Scientific, SingaporeGoogle Scholar
  129. 129.
    Frauenheim T, Seifert G, Elstner M, Niehaus T, Köhler C, Amkreutz M, Sternberg M, Hajnal Z, Di Carlo A, Suhai S (2002) J Phys Condens Matter 14:3015Google Scholar
  130. 130.
    Büttiker M (1986) Phys Rev B 33:3020Google Scholar
  131. 131.
    D’Amato JL, Pastawski HM (1990) Phys Rev B 41:7411Google Scholar
  132. 132.
    Richter J, Mertig M, Pompe W, Mönch I, Schackert HK (2001) Appl Phys Lett 78:536Google Scholar
  133. 133.
    Parkinson GN, Lee MPH, Neidle S (2002) Nature 417:876Google Scholar

Authors and Affiliations

  • Danny Porath
    • 1
  • Gianaurelio Cuniberti
    • 2
  • Rosa Di Felice
    • 3
  1. 1.Department of Physical Chemistry, Institute of ChemistryThe Hebrew UniversityJerusalem Israel
  2. 2.Institute for Theoretical PhysicsUniversity of Regensburg RegensburgGermany
  3. 3.INFM Center on nanoStructures and bioSystems at Surfaces (S3)Università di Modena e Reggio EmiliaModenaItaly

Personalised recommendations