Proton-Coupled Electron Transfer Reactions at a Distance in DNA Duplexes

Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 237)

Abstract

The nucleic acid analog 2-aminopurine (2AP) can be site-specifically incorporated into oligonucleotides without significantly affecting the thermal stabilities of DNA duplexes. Because the absorption band of 2AP extends beyond 300 nm, it can be selectively ionized with intense 308-nm excimer laser pulses by a tandem two-photon absorption mechanism yielding site-specifically positioned 2AP radical cations. The primary radical cations deprotonate yielding 2AP neutral radicals. These neutral radicals are strong one-electron oxidants that are capable of oxidizing guanines by a proton-coupled electron transfer mechanism even when the electron donor–acceptor pair is separated by varying numbers of bridging bases. In this process, the aqueous solution serves as a sink and source of protons in the deprotonation of the guanine radical cation and the protonation of the reduced 2AP acceptor. The involvement of solvent protons in the proton-coupled electron transfer reactions at a distance occurring within the DNA duplexes is manifested by the appearance of a solvent deuterium isotope effect on the reaction rates. The lifetimes of the guanine neutral radicals in DNA are greater than the lifetimes of their radical cation precursors and are limited by trapping reactions leading to the formation of potentially mutagenic oxidatively modified guanine bases.

Keywords

DNA Oxidative damage Proton-coupled electron transfer Hole transfer Laser flash photolysis 

Abbreviations and Symbols

2AP

2-Aminopurine

2AP·+

2-Aminopurine radical cation

2AP(-H)·

2-Aminopurine neutral radical

G·+

Guanine radical cation

G(-H)·

Guanine neutral radical

dG·+

2′-Deoxyguanosine radical cation

dG(-H)·

2′-Deoxyguanosine neutral radical

dGMP(-H)·

Neutral radical of 2′-deoxyguanosine 5′-monophosphate

8-oxo-dG

8-Oxo-7,8-dihydro-2′-deoxyguanosine

8-nitro-dG

8-Nitro-2′-deoxyguanosine.

eh

Hydrated electron

fwhm

Full width at half of maximum

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The research described here has been supported by the National Science Foundation, Grant CHE-9700429, by the National Institutes of Health, Grant 5-R01-ES011589, and by a grant from the Kresge Foundation.

References

  1. 1.
    Beckman KB, Ames BN (1997) J Biol Chem 272:19633Google Scholar
  2. 2.
    Grisham MB, Jourd’heuil D, Wink DA (2000) Aliment Pharmacol Ther 14 Suppl 1:3Google Scholar
  3. 3.
    Cadet J, Bourdat AG, D’Ham C, Duarte V, Gasparutto D, Romieu A, Ravanat JL (2000) Mutat Res 462:121Google Scholar
  4. 4.
    Nunez ME, Hall DB, Barton JK (1999) Chem Biol 6:85Google Scholar
  5. 5.
    Schuster GB (2000) Acc Chem Res 33:253Google Scholar
  6. 6.
    Giese B (2002) Annu Rev Biochem 71:51Google Scholar
  7. 7.
    Hall DB, Holmlin RE, Barton JK (1996) Nature 382:731Google Scholar
  8. 8.
    Steenken S, Jovanovic SV (1997) J Am Chem Soc 119:617Google Scholar
  9. 9.
    Steenken S (1997) Biol Chem 378:1293Google Scholar
  10. 10.
    Shafirovich V, Dourandin A, Huang W, Luneva NP, Geacintov NE (1999) J Phys Chem B 103:10924Google Scholar
  11. 11.
    Shafirovich V, Dourandin A, Huang W, Luneva NP, Geacintov NE (2000) Phys Chem Chem Phys 2:4399Google Scholar
  12. 12.
    Shafirovich V, Cadet J, Gasparutto D, Dourandin A, Huang W, Geacintov NE (2001) J Phys Chem B 105:586Google Scholar
  13. 13.
    Shafirovich V, Dourandin A, Geacintov NE (2001) J Phys Chem B 105:8431Google Scholar
  14. 14.
    Shafirovich V, Dourandin A, Luneva NP, Geacintov NE (2000) J Phys Chem B 104:137Google Scholar
  15. 15.
    Shafirovich V, Dourandin A, Huang W, Geacintov NE (2001) J Biol Chem 276:24621Google Scholar
  16. 16.
    Ronen A (1980) Mutat Res 75:1Google Scholar
  17. 17.
    Nordlund TM, Andersson S, Nilsson L, Rigler R, Gräslund A, McLaughlin LW (1989) Biochemistry 28:9095Google Scholar
  18. 18.
    Law SW, Eritja R, Goodman MF, Breslauer KJ (1996) Biochemistry 35:12329Google Scholar
  19. 19.
    Sowers LC, Fazakerley GV, Eritja R, Kaplan BE, Goodman MF (1986) Proc Natl Acad Sci USA 83:5434Google Scholar
  20. 20.
    Fagan PA, Fabrega C, Eritja R, Goodman MF, Wemmer DE (1996) Biochemistry 35:4026Google Scholar
  21. 21.
    Sowers LC, Boulard Y, Fazakerley GV (2000) Biochemistry 39:7613Google Scholar
  22. 22.
    Callis PR (1983) Annu Rev Phys Chem 34:329Google Scholar
  23. 23.
    Holmén A, Nordén B, Albinsson B (1997) J Am Chem Soc 119:3114Google Scholar
  24. 24.
    Rigler R, Claesens F (1986) In: Van Knippenberg PH, Hilbers CW (eds) Structure and dynamics of RNA. Plenum, New York, p 45Google Scholar
  25. 25.
    Guest CR, Hochstrasser RA, Sowers LC, Millar DP (1991) Biochemistry 30:3271Google Scholar
  26. 26.
    Hochstrasser RA, Carver TE, Sowers LC, Millar DP (1994) Biochemistry 33:11971Google Scholar
  27. 27.
    Kelley SO, Barton JK (1999) Science 283:375Google Scholar
  28. 28.
    Wan C, Fiebig T, Schiemann O, Barton JK, Zewail AH (2000) Proc Natl Acad Sci USA 97:14052Google Scholar
  29. 29.
    Larsen OFA, Van Stokkum IHM, Gobets B, Van Grondelle R, Van Amerongen H (2001) Biophys J 81:1115Google Scholar
  30. 30.
    Bernards AS, Miller JK, Bao KK, Wong I (2002) J Biol Chem 277:20960Google Scholar
  31. 31.
    Ying J, Bradley RK, Jones LB, Reddy MS, Colbert DT, Smalley RE, Hardin SH (1999) Biochemistry 38:16461Google Scholar
  32. 32.
    Mandal SS, Fidalgo da Silva E, Reha-Krantz LJ (2002) Biochemistry 41:4399Google Scholar
  33. 33.
    Dunlap CA, Tsai MD (2002) Biochemistry 41:11226Google Scholar
  34. 34.
    Stivers JT (1998) Nucleic Acids Res 26:3837Google Scholar
  35. 35.
    Allan BW, Reich NO (1996) Biochemistry 35:14757Google Scholar
  36. 36.
    Holz B, Klimasauskas S, Serva S, Weinhold E (1998) Nucleic Acids Res 26:1076Google Scholar
  37. 37.
    Malygin EG, Evdokimov AA, Zinoviev VV, Ovechkina LG, Lindstrom WM, Reich NO, Schlagman SL, Hattman S (2001) Nucleic Acids Res 29:2361Google Scholar
  38. 38.
    Larsen OFA, Van Stokkum IHM, de Weerd FL, Vengreis M, Aravinda Kumar CT, Van Grondelle R, Geacintov NE, Van Amerongen H (2003) Phys Chem Chem Phys (accepted)Google Scholar
  39. 39.
    Jean JM, Hall KB (2001) Proc Natl Acad Sci USA 98:37Google Scholar
  40. 40.
    Pal SK, Peon J, Zewail AH (2002) Chem Phys Lett 363:57Google Scholar
  41. 41.
    Hart EJ, Boag JW (1962) J Am Chem Soc 84:4090Google Scholar
  42. 42.
    Candeias LP, Wolf P, O’Neill P, Steenken S (1992) J Phys Chem 96:10302Google Scholar
  43. 43.
    Nikogosyan DN, Gurzadyan GG (1984) Laser Chem 4:297Google Scholar
  44. 44.
    Candeias LP, O’Neill P, Jones GDD, Steenken S (1992) Int J Radiat Biol 61:15Google Scholar
  45. 45.
    Melvin T, Botchway SW, Parker AW, O’Neill PJ (1995) J Chem Soc Chem Commun 653Google Scholar
  46. 46.
    Melvin T, Botchway SW, Parker AW, O’Neill P (1996) J Am Chem Soc 118:10031Google Scholar
  47. 47.
    Candeias LP, Steenken S (1992) J Am Chem Soc 114:699Google Scholar
  48. 48.
    Candeias LP, Steenken S (1989) J Am Chem Soc 111:1094Google Scholar
  49. 49.
    Steenken S (1992) Free Radic Res Commun 16:349Google Scholar
  50. 50.
    Shafirovich V, Dourandin A, Luneva NP, Geacintov NE (2000) J Chem Soc Perkin Trans 2:271Google Scholar
  51. 51.
    Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) J Phys Chem Ref Data 17:513Google Scholar
  52. 52.
    Beckman KB, Ames BN (1999) Mutat Res 424:51Google Scholar
  53. 53.
    Baik SC, Youn HS, Chung MH, Lee WK, Cho MJ, Ko GH, Park CK, Kasai H, Rhee KH (1996) Cancer Res 56:1279Google Scholar
  54. 54.
    Musarrat J, Arezina-Wilson J, Wani AA (1996) Eur J Cancer 32A:1209Google Scholar
  55. 55.
    Li D, Zhang W, Sahin AA, Hittelman WN (1999) Cancer Detect Prev 23:454Google Scholar
  56. 56.
    Steenken S, Jovanovic SV, Bietti M, Bernhard K (2000) J Am Chem Soc 122:2373Google Scholar
  57. 57.
    Cukier RI, Nocera DG (1998) Annu Rev Phys Chem 49:337Google Scholar
  58. 58.
    Cukier RI (2002) J Phys Chem B 106:1746Google Scholar
  59. 59.
    Decornez H, Hammes-Schiffer S (2000) J Phys Chem A 104:9370Google Scholar
  60. 60.
    Carra C, Iordanova N, Hammes-Schiffer S (2002) J Phys Chem B 106:8415Google Scholar
  61. 61.
    Kuzmin VA, Dourandin A, Shafirovich V, Geacintov NE (2000) Phys Chem Chem Phys 2:1531Google Scholar
  62. 62.
    O’Connor D, Shafirovich VY, Geacintov NE (1994) J Phys Chem 98:9831Google Scholar
  63. 63.
    Shafirovich VY, Courtney SH, Ya N, Geacintov NE (1995) J Am Chem Soc 117:4920Google Scholar
  64. 64.
    Weatherly SC, Yang IV, Thorp HH (2001) J Am Chem Soc 123:1236Google Scholar
  65. 65.
    Cai Z, Li X, Sevilla MD (2002) J Phys Chem B 106:2755Google Scholar
  66. 66.
    Razskazovskii Y, Roginskaya M, Sevilla MD (1998) Radiat Res 149:422Google Scholar
  67. 67.
    Taylor J, Eliezer I, Sevilla MD (2001) J Phys Chem B 105:1614Google Scholar
  68. 68.
    Kawai K, Wata Y, Ichinose N, Majima T (2000) Angew Chem Int Ed 39:4327Google Scholar
  69. 69.
    Kawai K, Wata Y, Hara M, Tojo S, Majima T (2002) J Am Chem Soc 124:3586Google Scholar
  70. 70.
    Nikogosyan DN, Angelov DA, Oraevsky AA (1982) Photochem Photobiol 35:627Google Scholar
  71. 71.
    Nikogosyan DN (1990) Int J Radiat Biol 57:233Google Scholar
  72. 72.
    Nikogosyan DN, Letokhov VS (1983) Riv Nuovo Cimento 6:1Google Scholar
  73. 73.
    Gueron M, Kochoyan M, Leroy JL (1987) Nature 328:89Google Scholar
  74. 74.
    Kochoyan M, Leroy JL, Gueron M (1987) J Mol Biol 196:599Google Scholar
  75. 75.
    Leroy JL, Charretier E, Kochoyan M, Gueron M (1988) Biochemistry 27:8894Google Scholar
  76. 76.
    Jortner J, Bixon M, Langenbacher T, Michel-Beyerle ME (1998) Proc Natl Acad Sci USA 95:12759Google Scholar
  77. 77.
    Bixon M, Giese B, Wessely S, Langenbacher T, Michel-Beyerle ME, Jortner J (1999) Proc Natl Acad Sci USA 96:11713Google Scholar
  78. 78.
    Lewis FD, Zuo X, Liu J, Hayes RT, Wasielewski MR (2002) J Am Chem Soc 124:4568Google Scholar
  79. 79.
    Bachler V, Hildenbrand K (1992) Radiat Phys Chem 40:59Google Scholar
  80. 80.
    Hildenbrand K, Schulte-Frohlinde D (1990) Free Radic Res Commun 11:195Google Scholar
  81. 81.
    Schiemann O, Turro NJ, Barton JK (2000) J Phys Chem B 104:7214Google Scholar
  82. 82.
    Hutter M, Clark T (1996) J Am Chem Soc 118:7574Google Scholar
  83. 83.
    Kovalsky OI, Panyutin IG, Budowsky EI (1990) Photochem Photobiol 52:509Google Scholar
  84. 84.
    Ito K, Inoue S, Yamamoto K, Kawanishi S (1993) J Biol Chem 268:13221Google Scholar
  85. 85.
    Saito I, Takayama M, Sugiyama H, Nakatani K, Tsuchida A, Yamamoto M (1995) J Am Chem Soc 117:6406Google Scholar
  86. 86.
    Muller JG, Hickerson RP, Perez RJ, Burrows CJ (1997) J Am Chem Soc 119:1501Google Scholar
  87. 87.
    Saito I, Nakamura T, Nakatani K, Yoshioka Y, Yamaguchi K, Sugiyama H (1998) J Am Chem Soc 120:12686Google Scholar
  88. 88.
    Yoshioka Y, Kitagawa Y, Takano Y, Yamaguchi K, Nakamura T, Saito I (1999) J Am Chem Soc 121:8712Google Scholar
  89. 89.
    Hickerson RP, Prat F, Muller JG, Foote CS, Burrows CJ (1999) J Am Chem Soc 121:9423Google Scholar
  90. 90.
    Nakatani K, Dohno C, Saito I (2000) J Am Chem Soc 122:5893Google Scholar
  91. 91.
    Sugiyama H, Saito I (1996) J Am Chem Soc 118:7063Google Scholar
  92. 92.
    Lewis FD, Liu X, Liu J, Hayes RT, Wasielewski MR (2000) J Am Chem Soc 122:12037Google Scholar
  93. 93.
    Al-Sheikhly M (1994) Radiat Phys Chem 44:297Google Scholar
  94. 94.
    Steenken S, Jovanovic SV, Candeias LP, Reynisson J (2001) Chem Eur J 7:2829Google Scholar
  95. 95.
    Kawanishi S, Hiraku Y, Oikawa S (2001) Mutat Res 488:65Google Scholar
  96. 96.
    Augusto O, Bonini MG, Amanso AM, Linares E, Santos CC, De Menezes SL (2002) Free Radic Biol Med 32:841Google Scholar
  97. 97.
    Goss SP, Singh RJ, Kalyanaraman B (1999) J Biol Chem 274:28233Google Scholar
  98. 98.
    Zhang H, Joseph J, Felix C, Kalyanaraman B (2000) J Biol Chem 275:14038Google Scholar
  99. 99.
    Lymar SV, Hurst JK (1998) J Am Chem Soc 37:294Google Scholar
  100. 100.
    Goldstein S, Czapski G (1999) J Am Chem Soc 121:2444Google Scholar
  101. 101.
    Bonini MG, Radi R, Ferrer-Sueta G, Ferreira AM, Augusto O (1999) J Biol Chem 274:10802Google Scholar
  102. 102.
    Hodges GR, Ingold KU (1999) J Am Chem Soc 121:10695Google Scholar
  103. 103.
    Neta P, Huie RE, Ross AB (1988) J Phys Chem Ref Data 17:1027Google Scholar
  104. 104.
    Adams GE, Aldrich JE, Bisby RH, Cundall RB, Redpath JL, Willson RL (1972) Radiat Res 49:278Google Scholar
  105. 105.
    Chen S-N, Hoffman MZ (1973) Radiat Res 56:40Google Scholar
  106. 106.
    Baverstock KF, Cundall RB, Adams GE, Redpath JL (1974) Int J Radiat Biol 26:39Google Scholar
  107. 107.
    Burrows CJ, Muller JG (1998) Chem Rev 98:1109Google Scholar
  108. 108.
    Patel DJ, Pardi A, Itakura K (1982) Science 216:581Google Scholar
  109. 109.
    Shafirovich V, Cadet J, Gasparutto D, Dourandin A, Geacintov NE (2001) Chem Res Toxicol 14:233Google Scholar
  110. 110.
    Candeias LP, Steenken S (2000) Chem Eur J 6:475Google Scholar
  111. 111.
    Van der Vliet A, Eiserich JP, Halliwell B, Cross CE (1997) J Biol Chem 272:7617Google Scholar
  112. 112.
    Byun J, Mueller DM, Fabjan JS, Heinecke JW (1999) FEBS Lett 455:243Google Scholar
  113. 113.
    Eiserich JP, Cross CE, Jones AD, Halliwell B, van der Vliet A (1996) J Biol Chem 271:19199Google Scholar
  114. 114.
    Jiang Q, Hurst JK (1997) J Biol Chem 272:32767Google Scholar
  115. 115.
    Gerasimov OV, Lymar SV (1999) Inorg Chem 38:4317Google Scholar
  116. 116.
    Stanbury DM (1989) Adv Inorg Chem 33:69Google Scholar
  117. 117.
    Prütz WA, Monig H, Butler J, Land EJ (1985) Arch Biochem Biophys 243:125Google Scholar
  118. 118.
    Shafirovich V, Mock S, Kolbanovskiy A, Geacintov NE (2002) Chem Res Toxicol 15:591Google Scholar
  119. 119.
    Behar D, Fessenden RW (1972) J Phys Chem 76:1710Google Scholar
  120. 120.
    Lewis FD, Liu X, Liu J, Miller S, Hayes RT, Wasielewski MR (2000) Nature 406:51Google Scholar
  121. 121.
    Lewis FD, Wu T, Liu X, Letsinger RL, Greenfield SR, Miller SE, Wasielewski MR (2000) J Am Chem Soc 122:2889Google Scholar

Authors and Affiliations

  1. 1.Chemistry Department and Radiation and Solid State LaboratoryNew York UniversityNew YorkUSA

Personalised recommendations