Long-Range Charge Transfer in DNA I pp 187-204 | Cite as
Excess Electron Transfer in Defined Donor-Nucleobase and Donor-DNA-Acceptor Systems
- 21 Citations
- 269 Downloads
Abstract
The transfer of positive charge through DNA has been investigated in great detail over the last couple of years. In this area, major new mechanistic insights have been gained using defined acceptor modified DNA strands. Transport of exon electrons, in contrast, is much less well-explored. Our current mechanistic understanding is based on EPR spectroscopic studies of DNA material reduced using solvated electrons. Herein we report the development of defined donor-acceptor modified DNA double strands which allow the study of excess electron transfer with high precision. The model mimics the DNA repair process of DNA photolyases: they contain a reduced and deprotonated flavin as a light-triggered electron donor and a thymine dimer as the electron acceptor. The dimer performs a cycloreversion upon single electron reduction, which translates the electron capture event into a readily detectable strand break signal. Investigations with these model systems allowed us to clarify that electrons hop through DNA using pyrimidine bases as stepping stones.
Keywords
Excess Electron Pyrimidine Dimer Single Electron Transfer Cyclobutane Pyrimidine Dimer Single Electron ReductionPreview
Unable to display preview. Download preview PDF.
References
- 1.Pouget JP, Douki T, Richard MJ, Cadet J (2000) Chem Res Toxicol 13:541Google Scholar
- 2.Seidel CAM, Schulz A, Sauer MHM (1996) J Phys Chem 100:5541Google Scholar
- 3.Steenken S, Jovanovic SV (1997) J Am Chem Soc 119:617Google Scholar
- 4.Melvin T, Botchway S, Parker AW, O’Neill P (1995) Chem Comm 653Google Scholar
- 5.Debije MG, Milano MT, Bernhard WA (1999) Angew Chem Int Ed 38:2752Google Scholar
- 6.Holmlin RE, Dandlicker PJ, Barton JK (1997) Angew Chem Int Ed 36:2715Google Scholar
- 7.Giese B (2000) Acc Chem Res 33:631Google Scholar
- 8.Lewis FD, Letsinger RL, Wasielewski MR (2001) Acc Chem Res 34:159Google Scholar
- 9.Schuster GB (2000) Acc Chem Res 33:253Google Scholar
- 10.Giese B (2000) Chem Phys Chem 1:195Google Scholar
- 11.Giese B, Amaudrut J, Köhler A-K, Spormann M, Wessely S (2001) Nature 4112:318Google Scholar
- 12.Lewis FD, Miller SE, Hayes RT, Wasielewski MR (2002) J Am Chem Soc 124:11280Google Scholar
- 13.Barnett RN, Cleveland CL, Joy A, Landman U, Schuster GB (2001) Science 294:567Google Scholar
- 14.Lewis FD, Wu T, Zhang Y, Letsinger RL, Greenfield SR, Wasielewski MR (1997) Science 277:673Google Scholar
- 15.Santosh U, Schuster GB (2002) J Am Chem Soc 124:10986Google Scholar
- 16.Williams TT, Barton JK (2002) J Am Chem Soc 124:1840Google Scholar
- 17.Dotse AK, Boone EK, Schuster GB (2000) J Am Chem Soc 122:6825Google Scholar
- 18.Vivic DA, Odom DT, Núñez ME, Gianolio DA, McLaughlin LW, Barton JK (2000) J Am Chem Soc 122:8603Google Scholar
- 19.Burrows CJ, Muller JG (1998) Chem Rev 98:1109Google Scholar
- 20.Friedberg EC, Walker GC, Siede W (1995) DNA repair and mutagenesis. ASM Press, WashingtonGoogle Scholar
- 21.Lewis FD, Liu X, Wu Y, Miller SE, Wasielewski MR, Letsinger RL, Sanishvili R, Joachimiak A, Tereshko V, Egli M (1999) J Am Chem Soc 121:9905Google Scholar
- 22.Giese B, Wessely S, Sporman M, Lindemann U, Meggers E, Michel-Beyerle ME (1999) Angew Chem Int Ed 38:996Google Scholar
- 23.Cai L, Tabata H, Kawai T (2000) Appl Phys Lett 77:3105Google Scholar
- 24.Yoo K-H-, Ha DH, Lee J-O, Park JW, Kim J, Kim JJ, Lee H-Y, Kawai T, Choi HY (2001) Phys Rev Lett 87:1981021Google Scholar
- 25.Fink H-W, Schönenberger C (1999) Nature 398:407Google Scholar
- 26.Porath D, Bezryadin A, De Vries S, Dekker C (2000) Nature 403:635Google Scholar
- 27.Heelis PF, Hartman RF, Rose SD (1995) Chem Soc Rev 24:289Google Scholar
- 28.Carell T (1995) Angew Chem Int Ed 34:2491Google Scholar
- 29.Sancar A (1994) Biochemistry 33:2Google Scholar
- 30.Carell T, Burgdorf LT, Kundu LM, Cichon MK (2001) Curr Op Chem Biol S 491Google Scholar
- 31.Kanai S, Kikuna R, Toh H, Ryo H, Todo T (1997) J Mol Evol 45:535Google Scholar
- 32.Hitomi K, Nakamura H, Kim S-T, Mizikoshi T, Ishikawa T, Iwai S, Todo T (2001) J Biol Chem 276:10103Google Scholar
- 33.Yeh S-R, Falvey DE (1992) J Am Chem Soc 114:7313Google Scholar
- 34.Scannel MP, Fenick DJ, Yeh S-R, Falvey DE (1997) J Am Chem Soc 119:1971Google Scholar
- 35.Steenken S, Telo JP, Novais HM, Candeias LP (1992) J Am Chem Soc 114:4701Google Scholar
- 36.Scannel MP, Prakash G, Falvey DE (1997) J Phys Chem A 101:4332Google Scholar
- 37.Steenken S (1997) Biol Chem 378:1293Google Scholar
- 38.Zhongli XL, Sevilla MD (2001) J Phys Chem B 105:10115Google Scholar
- 39.Debije MG, Bernhard WA (2002) J Phys Chem A 106:4608Google Scholar
- 40.Voityuk AA, Michel-Beyerle ME, Rösch N (2001) Chem Phys Lett 342:231Google Scholar
- 41.Carell T, Epple R, Gramlich V (1996) Angew Chem Int Ed 35:620Google Scholar
- 42.Epple R, Wallenborn E-U, Carell T (1997) J Am Chem Soc 119:7440Google Scholar
- 43.Hartman RF, Rose SD (1992) J Am Chem Soc 114:3559Google Scholar
- 44.Carell T, Epple R (1998) Eur J Org Chem 7:1245Google Scholar
- 45.Cichon MK, Arnold S, Carell T (2002) Angew Chem Int Ed 51:767Google Scholar
- 46.Wagenknecht H-A, Stemp EDA, Barton JK (2000) Biochemistry 39:5483Google Scholar
- 47.Epple R, Carell T (1998) Angew Chem Int Ed 37:938Google Scholar
- 48.Epple R, Carell T (1999) J Am Chem Soc 121:7318Google Scholar
- 49.Schwögler A, Carell T (2000) Org Lett 2:1415Google Scholar
- 50.Butenandt J, Eker APM, Carell T (1998) Chem Eur J 4:642Google Scholar
- 51.Schwögler A, Burgdorf LT, Carell T (2000) Angew Chem Int Ed 39:3918Google Scholar
- 52.Kundu LM, Burgdorf LT, Kleiner O, Batschauer A, Carell T (2002) Chem Bio Chem 3:1053Google Scholar
- 53.Behrens C, Burgdorf LT, Schwögler A, Carell T (2002) Angew Chem Int Ed 114:1841Google Scholar
- 54.Dandlicker PJ, Holmlin RE, Barton JK (1997) Science 275:1465Google Scholar
- 55.Dandlicker PJ, Núñez ME, Barton JK (1998) Biochemistry 37:6491Google Scholar
- 56.Bixon M, Jortner J (2001) J Am Chem Soc 123:12556Google Scholar
- 57.Jortner J, Bixon M, Langenbacher T, Michel-Beyerle ME (1998) Proc Natl Acad Sci USA 95:12759Google Scholar
- 58.Pezeshk A, Symons MCR, McClymont JD (1996) J Phys Chem 100:18562Google Scholar
- 59.Messer A, Carpenter K, Forzley K, Buchanan J, Yang S, Razskazovskii Y, Cai Z, Sevilla MD (2000) J Phys Chem B 104:1128Google Scholar
- 60.Cai Z, Gu Z, Sevilla MD (2000) J Phys Chem B 104:10406Google Scholar
- 61.Nielsen PE, Egholm M (1999) Horizon Scientific Press, NorfolkGoogle Scholar
- 62.Cichon MK, Haas CH, Grolle F, Mees A, Carell T (2002) J Am Chem Soc 124:13984Google Scholar
- 63.Behrens C, Ober M, Carell T (2002) Eur J Org Chem 3281Google Scholar