Skip to main content

The Mechanism of Long-Distance Radical Cation Transport in Duplex DNA: Ion-Gated Hopping of Polaron-Like Distortions

  • Chapter
Long-Range Charge Transfer in DNA I

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 236))

Abstract

The irradiation of an anthraquinone derivative that is covalently attached to duplex DNA injects a radical cation into the bases of the DNA. This radical cation can migrate hundreds of Ã…ngstroms before it is trapped at GG steps by reaction with water. These damaged guanines result in DNA strand scissions when they are treated with piperidine. Investigation of several such DNA constructs reveals that the efficiency of radical cation migration is strongly dependent on the sequence of bases in the DNA. This observation led to the formulation of the phonon-assisted polaron hopping model for the mechanism of radical cation migration. In this model, DNA and its ionic and solvent environment are assumed to undergo motions on the timescale of the radical cation hopping. These motions lead to a distortion of the local environment around the radical cation that causes it to gain stability (the polaron). Thermal motions of the DNA and its environment (phonons) cause the radical cation to migrate adiabatically from one polaronic site to another.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beckman KB, Ames BN (1997) J Biol Chem 272:19633

    Google Scholar 

  2. Cadet J (1994) In: Hemminiki K, Dipple A, Shiker DE, Kadlubar FF, Segerback D, Bartsch H (eds) IARC, Lyon

    Google Scholar 

  3. Sies H (1993) Mutat Res 275:367

    Google Scholar 

  4. Burrows CJ, Muller JG (1998) Chem Revs 98:1109

    Google Scholar 

  5. Pogozelski WK, Tullius TD (1998) Chem Revs 98:1089

    Google Scholar 

  6. Kasai H, Yamaizumi Z, Berger M, Cadet J (1992) J Am Chem Soc 114:9692

    Google Scholar 

  7. Schuster GB (2000) Acc Chem Res 33:253

    Google Scholar 

  8. Giese B, Meggers E, Wessely S, Spormann B, Biland A (2000) Chimia 54:547

    Google Scholar 

  9. Kelley SO, Barton JK (1999) Metal Ions Biological Syst 36:211

    Google Scholar 

  10. Rehm D, Weller A (1970) Israel J Chem 8:259

    Google Scholar 

  11. Armitage BA, Yu C, Devadoss C, Schuster GB (1994) J Am Chem Soc 116:9847

    Google Scholar 

  12. Gasper SM, Schuster GB (1997) J Am Chem Soc 119:12762

    Google Scholar 

  13. Ly D, Sanii L, Schuster GB (1999) J Am Chem Soc ??:9400

    Google Scholar 

  14. Sanii L, Schuster GB (2000) J Am Chem Soc 122:11545

    Google Scholar 

  15. Deshmukh H, Joglekar SP, Broom AD (1995) Bioconjugate Chem 6:578

    Google Scholar 

  16. Nakatani K, Dohno C, Saito I (1999) J Am Chem Soc 121:10854

    Google Scholar 

  17. Saito I, Takayama M, Sugiyama H, Nakatani K, Tsuchida A, Yamamoto M (1995) J Am Chem Soc 117:6406

    Google Scholar 

  18. Prat F, Houk KN, Foote CS (1998) J Am Chem Soc 120:845

    Google Scholar 

  19. Sartor V, Boone E, Schuster GB (2001) J Phys Chem B 105:11057

    Google Scholar 

  20. Steenken S, Jovanovic SV (1997) J Am Chem Soc 119:617

    Google Scholar 

  21. Giese B, Biland A (2002) Chem Commun ??:667

    Google Scholar 

  22. Hickerson RP, Prat F, Muller JG, Foote CS, Burrows CJ (1999) J Am Chem Soc 121:9423

    Google Scholar 

  23. Henderson PT, Jones D, Hampikian G, Kan Y, Schuster GB (1999) Proc Natl Acad Sci USA 96:8353

    Google Scholar 

  24. Nunez M, Hall DB, Barton JK (1999) Chemistry & Biology 6:85

    Google Scholar 

  25. Santhosh U, Schuster GB (2002) J Am Chem Soc 124:10986

    Google Scholar 

  26. Liu C-S, Schuster GB (2003) J Am Chem Soc (submitted for publication)

    Google Scholar 

  27. Barnett RN, Cleveland CL, Landman U, Boone E, Kanvah S, Schuster GB (2003) J Phys Chem B (in press)

    Google Scholar 

  28. Stemp EDA, Barton JK (1996) Metal Ions in Biol Systems 33:325

    Google Scholar 

  29. Murphy CJ, Arkin MR, Jenkins Y, Ghatlia ND, Bossman SH, Turro NJ, Barton JK (1993) Science 262:1025

    Google Scholar 

  30. Turro NJ, Barton JK (1998) J Biol Inorg Chem 3:201

    Google Scholar 

  31. Jortner J, Bixon M, Langenbacher T, Michel-Beyerle ME (1998) Proc Natl Acad Sci USA 95:12759

    Google Scholar 

  32. Bixon M, Giese B, Wessely S, Langenbacher T, Michel-Beyerle ME, Jortner J (1999) Proced Natl Acad Sci USA 96:11713

    Google Scholar 

  33. Bixon M, Jortner J (2000) J Phys Chem B 104:3906

    Google Scholar 

  34. Jortner J, Bixon M, Voityuk AA, Rosch N (2002) J Phys Chem A 106:7599

    Google Scholar 

  35. Barnett RN, Cleveland CL, Joy A, Landman U, Schuster GB (2001) Science 294:567

    Google Scholar 

  36. Rakhamanova SV, Conwell EM (2001) J Chem Phys B 105:2056

    Google Scholar 

  37. Conwell EM, Rakhmanova SV (2000) Proc Natl Acad Sci USA 97:4556

    Google Scholar 

  38. Bloomfield VA, Crothers DM, Tinoco JI (1999) Nucleic Acids: Structure, Properties, and Function. University Science Books, Sausalito

    Google Scholar 

  39. Dickerson RE (1992) Methods in Enzymol 211:67

    Google Scholar 

  40. Eley DD, Spivey DI (1962) Trans Farad Soc 58:411

    Google Scholar 

  41. Wan CZ, Fiebig T, Schiemann O, Barton JK, Zewail AH (2000) Proc Natl Acad Sci USA 97:14052

    Google Scholar 

  42. Fahlman RP, Sharma RD, Sen D (2002) J Am Chem Soc 124:ASAP (??)

    Google Scholar 

  43. Lewis FD, Zuo X, Hayes RT, Wasielewski MR (2002) J Am Chem Soc 124:4568

    Google Scholar 

  44. Shafirovich V, Dourandin A, Huang WD, Luneva NP, Geacintov NE (1999) J Phys Chem B 103:10924

    Google Scholar 

  45. Beveridge DL, McConnel KJ (2000) Current Opin Struct Biol 10:182

    Google Scholar 

  46. Troisi A, Giorgio Orlandi G (2002) J Chem Phys B 106:2093

    Google Scholar 

  47. Ly D, Kan Y, Armitage B, Schuster GB (1996) J Am Chem Soc 118:8747

    Google Scholar 

  48. Sewell GL (1962) Polarons and Excitions. Plenum Press, New York

    Google Scholar 

  49. Emin D (1986) Handbook of Conducting Polymers. Marcel Dekker, New York

    Google Scholar 

  50. McFail-Isom L, Sines CC, Williams LL (1999) Curr Opin Struct Biol 9:298

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary B. Schuster .

Editor information

G.B. Schuster

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schuster, G.B., Landman, U. (2004). The Mechanism of Long-Distance Radical Cation Transport in Duplex DNA: Ion-Gated Hopping of Polaron-Like Distortions. In: Schuster, G. (eds) Long-Range Charge Transfer in DNA I. Topics in Current Chemistry, vol 236. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b94414

Download citation

  • DOI: https://doi.org/10.1007/b94414

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20127-4

  • Online ISBN: 978-3-540-39880-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics