Advertisement

A modular systems biology analysis of cell cycle entrance into S-phase

  • Lilia AlberghinaEmail author
  • Riccardo L. Rossi
  • Danilo Porro
  • Marco Vanoni
Chapter
Part of the Topics in Current Genetics book series (TCG, volume 13)

Abstract

A modular systems biology approach to the study of the cell cycle of the budding yeast Saccharomyces cerevisiae is presented. Literature on the structure of yeast population and its relevance to the study of yeast cell cycle is reviewed. A model for the control of yeast cell cycle, with emphasis on a threshold mechanism controlling entrance into S-phase is presented. The simple model has been used as a framework to derive a molecular blow-up of the major upstream events controlling the G1 to S transition that involves two sequential thresholds cooperating in carbon source modulation of the critical cell size required to enter S-phase, a hallmark response of the cell cycle to changing growth conditions. The model is discussed as an aid to filter and give structure to post-genomic data. The iterative application of this approach allows to obtain more refined models capturing the major regulatory features and the molecular details of the circuits connecting cell growth to cell cycle.

Keywords

Yeast Population Yeast Cell Cycle Cell Cycle Entrance Cell Protein Content Average Protein Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. Alberghina L, Martegani E, Mariani L, Bortolan G (1983) A bimolecular mechanism for the cell size control of the cell cycle. Biosystems 16:297-305CrossRefPubMedGoogle Scholar
  2. 2. Alberghina L, Porro D (1993) Quantitative flow cytometry: analysis of protein distributions in budding yeast. A mini-review. Yeast 9:815-823CrossRefPubMedGoogle Scholar
  3. 3. Alberghina L, Porro D, Cazzador L (2001) Towards a blueprint of the cell cycle. Oncogene 20:1128-1134CrossRefPubMedGoogle Scholar
  4. 4. Alberghina L, Rossi RL, Querin L, Wanke V, Vanoni M (2004) A cell sizer network involving Cln3 and Far1 controls entrance into S-phase in the mitotic cycle of budding yeast. J Cell Biol 167:433-443CrossRefPubMedGoogle Scholar
  5. 5. Alberghina L, Smeraldi C, Ranzi BM, Porro D (1998) Control by nutrients of growth and cell cycle progression in budding yeast, analyzed by double-tag flow cytometry. J Bacteriol 180:3864-3872PubMedGoogle Scholar
  6. 6. Barberis M, DeGioia L, Ruzzene M, Sarno S, Marin O, Coccetti P, Fantucci P, Vanoni M, Alberghina L (2005) Ck2 phosphorylation regulates inhibitory activity of the yeast cyclin dependent kinase inhibitor Sic1. Biochem J Immediate Publication, doi:10.1042/BJ20041299Google Scholar
  7. 7. Barr MM (2003) Super models. Physiol Genomics 13:15-24PubMedGoogle Scholar
  8. 8. Begley TJ, Rosenbach AS, Ideker T, Samson LD (2002) Damage recovery pathways in Saccharomyces cerevisiae revealed by genomic phenotyping and interactome mapping. Mol Cancer Res 1:103-112PubMedGoogle Scholar
  9. 9. Besson A, Gurian-West M, Schmidt A, Hall A, Roberts JM (2004) p27Kip1 modulates cell migration through the regulation of RhoA activation. Genes Dev MISSING DETAILS?Google Scholar
  10. 10. Bugrim A, Nikolskaya T, Nikolsky Y (2004) Early prediction of drug metabolism and toxicity: systems biology approach and modeling. Drug Discov Today 9:127-135CrossRefPubMedGoogle Scholar
  11. 11. Carter BL, Jagadish MN (1978) The relationship between cell size and cell division in the yeast Saccharomyces cerevisiae. Exp Cell Res 112:15-24CrossRefPubMedGoogle Scholar
  12. 12. Castrillo JI, Oliver SG (2004) Yeast as a touchstone in post-genomic research: strategies for integrative analysis in functional genomics. J Biochem Mol Biol 37:93-106PubMedGoogle Scholar
  13. 13. Chang F, Herskowitz I (1990) Identification of a gene necessary for cell cycle arrest by a negative growth factor of yeast: FAR1 is an inhibitor of a G1 cyclin, CLN2. Cell 63:999-1011CrossRefPubMedGoogle Scholar
  14. 14. Chen KC, Csikasz-Nagy A, Gyorffy B, Val J, Novak B, Tyson JJ (2000) Kinetic analysis of a molecular model of the budding yeast cell cycle. Mol Biol Cell 11:369-391PubMedGoogle Scholar
  15. 15. Chen KC, Calzone L, Csikasz-Nagy A, Cross FR, Novak B, Tyson JJ (2004) Integrative analysis of cell cycle control in budding yeast. Mol Biol Cell 15:3841-3862CrossRefPubMedGoogle Scholar
  16. 16. Conzelmann H, Saez-Rodriguez J, Sauter T, Bullinger E, Allgower F, Gilles ED (2004) Reduction of mathematical models of signal transduction networks: simulation-based approach applied to EGF receptor signalling. J Syst Biol 1:159-169CrossRefGoogle Scholar
  17. 17. Coqueret O (2003) New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? Trends Cell Biol 13:65-70CrossRefPubMedGoogle Scholar
  18. 18. Deane CM, Salwinski L, Xenarios I, Eisenberg D (2002) Protein interactions: two methods for assessment of the reliability of high throughput observations. Mol Cell Proteomics 1:349-356CrossRefPubMedGoogle Scholar
  19. 19. DeRisi JL, Iyer VR, Brown PO (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680-686CrossRefPubMedGoogle Scholar
  20. 20. Elion EA (2000) Pheromone response, mating and cell biology. Curr Opin Microbiol 3:573-581CrossRefPubMedGoogle Scholar
  21. 21. Fu X, Ng C, Feng D, Liang C (2003) Cdc48p is required for the cell cycle commitment point at Start via degradation of the G1-CDK inhibitor Far1p. J Cell Biol 163:21-26CrossRefPubMedGoogle Scholar
  22. 22. Futcher B (1996) Cyclins and the wiring of the yeast cell cycle. Yeast 12:1635-1646CrossRefPubMedGoogle Scholar
  23. 23. Gallego C, Gari E, Colomina N, Herrero E, Aldea M (1997) The Cln3 cyclin is down-regulated by translational repression and degradation during the G1 arrest caused by nitrogen deprivation in budding yeast. EMBO J 16:7196-7206CrossRefPubMedGoogle Scholar
  24. 24. Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon AM, Cruciat CM, Remor M, Hofert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier MA, Copley RR, Edelmann A, Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G, Superti-Furga G (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141-147CrossRefPubMedGoogle Scholar
  25. 25. Hall DD, Markwardt DD, Parviz F, Heideman W (1998) Regulation of the Cln3-Cdc28 kinase by cAMP in Saccharomyces cerevisiae. EMBO J 17:4370-4378CrossRefPubMedGoogle Scholar
  26. 26. Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402:C47-C52CrossRefPubMedGoogle Scholar
  27. 27. Hartwell LH, Unger MW (1977) Unequal division in Saccharomyces cerevisiae and its implications for the control of cell division. J Cell Biol 75:422-435CrossRefPubMedGoogle Scholar
  28. 28. Henry CM (2003) Systems Biology. Chem Eng News 81:45-55Google Scholar
  29. 29. Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, Millar A, Taylor P, Bennett K, Boutilier K, Yang L, Wolting C, Donaldson I, Schandorff S, Shewnarane J, Vo M, Taggart J, Goudreault M, Muskat B, Alfarano C, Dewar D, Lin Z, Michalickova K, Willems AR, Sassi H, Nielsen PA, Rasmussen KJ, Andersen JR, Johansen LE, Hansen LH, Jespersen H, Podtelejnikov A, Nielsen E, Crawford J, Poulsen V, Sorensen BD, Matthiesen J, Hendrickson RC, Gleeson F, Pawson T, Moran MF, Durocher D, Mann M, Hogue CW, Figeys D, Tyers M (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415:180-183CrossRefPubMedGoogle Scholar
  30. 30. Hubler L, Bradshaw-Rouse J, Heideman W (1993) Connections between the Ras-cyclic AMP pathway and G1 cyclin expression in the budding yeast Saccharomyces cerevisiae. Mol Cell Biol 13:6274-6282PubMedGoogle Scholar
  31. 31. Ingolia NT Murray AW(2004) The ups and downs of modeling the cell cycle. Curr Biol 14:R771-R777CrossRefPubMedGoogle Scholar
  32. 32. Ito T, Ota K, Kubota H, Yamaguchi Y, Chiba T, Sakuraba K, Yoshida M (2002) Roles for the two-hybrid system in exploration of the yeast protein interactome. Mol Cell Proteomics 1:561-566CrossRefPubMedGoogle Scholar
  33. 33. Iyer VR, Horak CE, Scafe CS, Botstein D, Snyder M, Brown PO (2001) Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature 409:533-538CrossRefPubMedGoogle Scholar
  34. 34. Jeoung DI, Oehlen LJ, Cross FR (1998) Cln3-associated kinase activity in Saccharomyces cerevisiae is regulated by the mating factor pathway. Mol Cell Biol 18:433-441PubMedGoogle Scholar
  35. 35. Jorgensen P, Nishikawa JL, Breitkreutz BJ, Tyers M (2002) Systematic identification of pathways that couple cell growth and division in yeast. Science 297:395-400CrossRefPubMedGoogle Scholar
  36. 36. Jorgensen P, Tyers M (2004) How cells coordinate growth and division. Curr Biol 14:R1014-1027CrossRefPubMedGoogle Scholar
  37. 37. Kahn D, Westerhoff HV (1991) Control theory of regulatory cascades. J Theor Biol 153:255-85PubMedGoogle Scholar
  38. 38. Kitano H (2002a) Looking beyond the details: a rise in system-oriented approaches in genetics and molecular biology. Curr Genet 41:1-10CrossRefPubMedGoogle Scholar
  39. 39. Kitano H (2002b) Systems biology: a brief overview. Science 295:1662-1664CrossRefPubMedGoogle Scholar
  40. 40. Kitano H (2004a) Biological robustness. Nat Rev Genet 5: 826-837CrossRefPubMedGoogle Scholar
  41. 41. Kitano H (2004b) Cancer as a robust system: implications for anticancer therapy. Nat Rev Cancer 4:227-235CrossRefPubMedGoogle Scholar
  42. 42. Lee MG, Nurse P (1987) Cell cycle genes of the fission yeast. Sci Prog 71:1-14PubMedGoogle Scholar
  43. 43. Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, Hannett NM, Harbison CT, Thompson CM, Simon I, Zeitlinger J, Jennings EG, Murray HL, Gordon DB, Ren B, Wyrick JJ, Tagne JB, Volkert TL, Fraenkel E, Gifford DK, Young RA (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298:799-804CrossRefPubMedGoogle Scholar
  44. 44. Li F, Long T, Lu Y, Ouyang Q, Tang C (2004) The yeast cell-cycle network is robustly designed. Proc Natl Acad Sci USA 101:4781-4786CrossRefPubMedGoogle Scholar
  45. 45. Lord PG, Wheals AE (1980) Asymmetrical division of Saccharomyces cerevisiae. J Bacteriol 142:808-818PubMedGoogle Scholar
  46. 46. Martegani E, Vanoni M, Delia D (1984) A computer algorithm for the analysis of protein distribution in budding yeast. Cytometry 5:81-85CrossRefPubMedGoogle Scholar
  47. 47. Mendenhall MD (1993) An inhibitor of p34CDC28 protein kinase activity from Saccharomyces cerevisiae. Science 259:216-219PubMedGoogle Scholar
  48. 48. Mendenhall MD, Hodge AE (1998) Regulation of Cdc28 cyclin-dependent protein kinase activity during the cell cycle of the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 62:1191-1243PubMedGoogle Scholar
  49. 49. Morgan DO (1995) Principles of CDK regulation. Nature 374:131-134CrossRefPubMedGoogle Scholar
  50. 50. Morohashi M, Winn AE, Borisuk MT, Bolouri H, Doyle J, Kitano H (2002) Robustness as a measure of plausibility in models of biochemical networks. J Theor Biol 216:19-30CrossRefPubMedGoogle Scholar
  51. 51. Murray AW (2004) Recycling the cell cycle: cyclins revisited. Cell 116:221-234CrossRefPubMedGoogle Scholar
  52. 52. Newcomb LL, Diderich JA, Slattery MG, Heideman W (2003) Glucose regulation of Saccharomyces cerevisiae cell cycle genes. Eukaryot Cell 2:143-149CrossRefPubMedGoogle Scholar
  53. 53. Nise NS (2004) Control Systems Engineering, 4th edn. John Wiley & Son, Inc. Google Scholar
  54. 54. Nurse P (2000) The incredible life and times of biological cells. Science 289:1711-1716CrossRefPubMedGoogle Scholar
  55. 55. Nurse P (2003) Systems biology: understanding cells. Nature 424:883CrossRefPubMedGoogle Scholar
  56. 56. Obaya AJ, Sedivy JM (2002) Regulation of cyclin-Cdk activity in mammalian cells. Cell Mol Life Sci 59:126-142CrossRefPubMedGoogle Scholar
  57. 57. Peter M, Gartner A, Horecka J, Ammerer G, Herskowitz I (1993) FAR1 links the signal transduction pathway to the cell cycle machinery in yeast. Cell 73:747-760CrossRefPubMedGoogle Scholar
  58. 58. Peter M, Herskowitz I (1994) Direct inhibition of the yeast cyclin-dependent kinase Cdc28-Cln by Far1. Science 265:1228-1231PubMedGoogle Scholar
  59. 59. Porro D, Brambilla L, Alberghina L (2003) Glucose metabolism and cell size in continuous cultures of Saccharomyces cerevisiae. FEMS Microbiol Lett 229:165-171CrossRefPubMedGoogle Scholar
  60. 60. Porro D, Ranzi BM, Smeraldi C, Martegani E, Alberghina L (1995) A double flow cytometric tag allows tracking of the dynamics of cell cycle progression of newborn Saccharomyces cerevisiae cells during balanced exponential growth. Yeast 11:1157-1169CrossRefPubMedGoogle Scholar
  61. 61. Ranzi BM, Compagno C, Martegani E (1986) Analysis of protein and cell volume distribution in glucose-limited continuous cultures of budding yeast. Biotechnol Bioeng 28:185-190CrossRefGoogle Scholar
  62. 62. Rossell S, van der Weijden CC, Kruckeberg A, Bakker BM, Westerhoff HV (2002) Loss of fermentative capacity in baker's yeast can partly be explained by reduced glucose uptake capacity. Mol Biol Rep 29:255-257CrossRefPubMedGoogle Scholar
  63. 63. Rupes I (2002) Checking cell size in yeast. Trends Genet 18:479-485CrossRefPubMedGoogle Scholar
  64. 64. Russell RB (2002) Genomics, proteomics and bioinformatics: all in the same boat. Genome Biol 3:REPORTS4034CrossRefPubMedGoogle Scholar
  65. 65. Russo AA, Jeffrey PD, Patten AK, Massague J, Pavletich NP (1996) Crystal structure of the p27Kip1 cyclin-dependent-kinase inhibitor bound to the cyclin A-Cdk2 complex. Nature 382:325-331CrossRefPubMedGoogle Scholar
  66. 66. Sauro HM, Hucka M, Finney A, Wellock C, Bolouri H, Doyle J, Kitano H (2003) Next generation simulation tools: the Systems Biology Workbench and BioSPICE integration. Omics 7:355-372CrossRefPubMedGoogle Scholar
  67. 67. Schneider BL, Zhang J, Markwardt J, Tokiwa G, Volpe T, Honey S, Futcher B (2004) Growth rate and cell size modulate the synthesis of, and requirement for, G1-phase cyclins at start. Mol Cell Biol 24:10802-10813CrossRefPubMedGoogle Scholar
  68. 68. Schuster S, Kahn D, Westerhoff HV (1993) Modular analysis of the control of complex metabolic pathways. Biophys Chem 48:1-17CrossRefPubMedGoogle Scholar
  69. 69. Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9:3273-3297PubMedGoogle Scholar
  70. 70. Stelling J, Sauer U, Szallasi Z, Doyle FJ 3rd, Doyle J (2004) Robustness of cellular functions. Cell 118: 675-685CrossRefPubMedGoogle Scholar
  71. 71. Tapon N, Moberg KH, Hariharan IK (2001) The coupling of cell growth to the cell cycle. Curr Opin Cell Biol 13:731-737CrossRefPubMedGoogle Scholar
  72. 72. Tyson CB, Lord PG, Wheals AE (1979) Dependency of size of Saccharomyces cerevisiae cells on growth rate. J Bacteriol 138:92-98PubMedGoogle Scholar
  73. 73. Tyson JJ (1989) Effects of asymmetric division on a stochastic model of the cell division cycle. Math Biosci 96:165-184CrossRefPubMedGoogle Scholar
  74. 74. Tyson JJ, Chen KC, Novak B (2003) Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol 15:221-231CrossRefPubMedGoogle Scholar
  75. 75. Tyers M, Tokiwa G, Futcher B (1993) Comparison of the Saccharomyces cerevisiae G1 cyclins: Cln3 may be an upstream activator of Cln1, Cln2 and other cyclins. EMBO J 12:1955-1968PubMedGoogle Scholar
  76. 76. Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon D, Narayan V, Srinivasan M, Pochart P, Qureshi-Emili A, Li Y, Godwin B, Conover D, Kalbfleisch T, Vijayadamodar G, Yang M, Johnston M, Fields S, Rothberg JM (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403:623-627CrossRefPubMedGoogle Scholar
  77. 77. Valtz N, Peter M, Herskowitz I (1995) FAR1 is required for oriented polarization of yeast cells in response to mating pheromones. J Cell Biol 131:863-873CrossRefPubMedGoogle Scholar
  78. 78. Vander Heiden MG, Plas DR, Rathmell JC, Fox CJ, Harris MH, Thompson CB (2001) Growth factors can influence cell growth and survival through effects on glucose metabolism. Mol Cell Biol 21:5899-5912CrossRefPubMedGoogle Scholar
  79. 79. Vanoni M, Vai M, Popolo L, Alberghina L (1983) Structural heterogeneity in populations of the budding yeast Saccharomyces cerevisiae. J Bacteriol 156:1282-1291PubMedGoogle Scholar
  80. 80. Vermeulen K, Van Bockstaele DR, Berneman ZN (2003) The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif 36:131-149CrossRefPubMedGoogle Scholar
  81. 81. Wells WA (2002) Does size matter? J Cell Biol 158:1156-1159CrossRefPubMedGoogle Scholar
  82. 82. Werner T (2004) Proteomics and regulomics: the yin and yang of functional genomics. Mass Spectrom Rev 23:25-33CrossRefPubMedGoogle Scholar
  83. 83. Werner T, Fessele S, Maier H, Nelson PJ (2003) Computer modeling of promoter organization as a tool to study transcriptional coregulation. FASEB J 17:1228-1237CrossRefPubMedGoogle Scholar
  84. 84. Westerhoff HV Palsson BO (2004) The evolution of molecular biology into systems biology. Nat Biotechnol 22:1249-1252CrossRefPubMedGoogle Scholar
  85. 85. Vidal M (2001) A biological atlas of functional maps. Cell 104:333-339CrossRefPubMedGoogle Scholar
  86. 86. Wiley HS, Shvartsman SY, Lauffenburger DA (2003) Computational modeling of the EGF-receptor system: a paradigm for systems biology. Trends Cell Biol 13:43-50CrossRefPubMedGoogle Scholar
  87. 87. Willett JD (2002) Genomics, proteomics: What's next? Pharmacogenomics 3:727-728CrossRefPubMedGoogle Scholar
  88. 88. Woldringh CL, Huls PG, Vischer NO (1993) Volume growth of daughter and parent cells during the cell cycle of Saccharomyces cerevisiae a/alpha as determined by image cytometry. J Bacteriol 175:3174-3181PubMedGoogle Scholar
  89. 89. Yarmush ML, Banta S (2003) Metabolic engineering: advances in modeling and intervention in health and disease. Annu Rev Biomed Eng 5:349-381CrossRefPubMedGoogle Scholar
  90. 90. Yi TM, Kitano H, Simon MI (2003) A quantitative characterization of the yeast heterotrimeric G protein cycle. Proc Natl Acad Sci USA 100:10764-10769CrossRefPubMedGoogle Scholar

Authors and Affiliations

  • Lilia Alberghina
    • 1
    Email author
  • Riccardo L. Rossi
    • 1
  • Danilo Porro
    • 1
  • Marco Vanoni
    • 1
  1. 1.University of Milano - Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 MilanoItaly

Personalised recommendations