Modeling the E. coli cell: The need for computing, cooperation, and consortia

  • Barry L. WannerEmail author
  • Andrew Finney
  • Michael Hucka
Part of the Topics in Current Genetics book series (TCG, volume 13)


Escherichia coli K-12 is an ideal test bed for pushing forward the limits of our ability to understand cellular systems through computational modeling. A complete understanding will require arrays of mathematical models, a wealth of data from measurements of various life processes, and readily accessible databases that can be interrogated for testing our understanding. Accomplishing this will require improved approaches for mathematical modeling, unprecedented standardization for experimentation and data collection, completeness of data sets, and improved methods of accessing and linking information. Solving the whole cell problem, even for a simple E. coli model cell, will require the concerted efforts of many scientists with different expertise. In this chapter, we review advances in (i) computing for modeling cells, (ii) creating a common language for representing computational models (the Systems Biology Markup Language), and (iii) developing the International E. coli Alliance, which has been created to tackle the whole cell problem.


System Biology Ordinary Differential Equation Biochemical Network System Biology Markup Language Virtual Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1. Achard F, Vaysseix G, Barillot E (2001) XML, bioinformatics and data integration. Bioinformatics 17:115-125CrossRefPubMedGoogle Scholar
  2. 2. Allen NN, Calzone L, Chen KC, Ciliberto A, Ramakrishnan N, Shaffer CA, Sible JC, Tyson JJ, Vass MT, Watson LT, Zwolak JW (2003) Modeling regulatory networks at Virginia Tech. OMICS 7:285-299CrossRefPubMedGoogle Scholar
  3. 3. Alm E, Arkin AP (2003) Biological networks. Curr Opin Struct Biol 13:193-202CrossRefPubMedGoogle Scholar
  4. 4. Arkin AP (2001) Simulac and deduce. aparkin/Stuff/Software.html.Google Scholar
  5. 5. Augen J (2001) Information technology to the rescue! Nat Biotechnol 19:BE39-BE40Google Scholar
  6. 6. Baba T, Ara T, Okumura Y, Hasegawa M, Takai Y, Baba M, Oshima T, Datsenko KA, Tomita M, Wanner BL, Mori H (2005) Systematic construction of single gene deletions mutants in Escherichia coli K-12, submittedGoogle Scholar
  7. 7. Bailey JE (1998) Mathematical modeling and analysis in biochemical engineering: Past accomplishments and future opportunities. Biotechnol Prog 14:8-20CrossRefPubMedGoogle Scholar
  8. 8. Bialek W, Botstein D (2004) Introductory science and mathematics education for 21st-century biologists. Science 303:788-790CrossRefPubMedGoogle Scholar
  9. 9. Blattner FR, Plunkett G III, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453-1462CrossRefPubMedGoogle Scholar
  10. 10. Bosak J, Bray T (1999) XML and the second-generation web. Sci Am MayGoogle Scholar
  11. 11. Bower JM, Bolouri H (2001a) Computational modeling of genetic and biochemical networks. MIT Press, Cambridge, MassGoogle Scholar
  12. 12. Bower JM, Bolouri H (2001b) Introduction: understanding living systems. In: Bower, James M and Bolouri H (eds) Computational modeling of genetic and biochemical networks. MIT Press, Cambridge, Mass., p xiii-xxGoogle Scholar
  13. 13. Bray T, Paoli J, Sperberg-McQueen CM, Maler E (2000) Extensible markup language (XML) 1.0 Second Edition: Scholar
  14. 14. Brown CT, Rust AG, Clarke PJC, Pan Z, Schilstra MJ, De Buysscher T, Griffin G, Wold BJ, Cameron RA, Davidson EH, Bolouri H (2002) New computational approaches for analysis of cis-regulatory networks. Dev Biol 246:86-102CrossRefPubMedGoogle Scholar
  15. 15. Burns JA (1971) Studies on complex enzyme systems. University of EdinburghGoogle Scholar
  16. 16. Butler D (1999) Computing 2010: from black holes to biology. Nature 402:C67-C70CrossRefPubMedGoogle Scholar
  17. 17. Capra F (1996) The Web of Life: A new scientific understanding of living systems. Anchor Books, New YorkGoogle Scholar
  18. 18. Chance B (1960) Analogue and digital representations of enzyme kinetics. J Biol Chem 235:2440-2443PubMedGoogle Scholar
  19. 19. Chance B (1943) The kinetics of the enzyme-substrate compound of peroxidase. J Biol Chem 151:553-577Google Scholar
  20. 20. Chance B, Brainerd JG, Cajori FA, Millikan GA (1940) The kinetics of the enzyme-substrate compound of peroxidase and their relation to the Michaelis theory. Science 92:455Google Scholar
  21. 21. Chance B, Greenstein DS, Higgins J, Yang CC (1952) The mechanism of catalase action. II. Electric analog computer studies. Arch Biochem Biophys 37:322-339CrossRefGoogle Scholar
  22. 22. Chaudhuri RR, Khan AM, Pallen MJ (2004) coliBASE: an online database for Escherichia coli, Shigella and Salmonella comparative genomics; Nucleic Acids Res 32:D296-D299CrossRefPubMedGoogle Scholar
  23. 23. Chen S, Bigner SH, Modrich P (2001) High rate of CAD gene amplification in human cells deficient in MLH1 or MSH6. Proc Natl Acad Sci USA 98:13802-13807CrossRefPubMedGoogle Scholar
  24. 24. Corbin RW, Paliy O, Yang F, Shabanowitz J, Platt M, Lyons CE Jr, Root K, McAuliffe J, Jordan MI, Kustu S, Soupene E, Hunt DF (2003) Toward a protein profile of Escherichia coli: comparison to its transcription profile. Proc Natl Acad Sci USA 100:9232-9237CrossRefPubMedGoogle Scholar
  25. 25. Crick FHC (1973) Project K: ”The complete solution of E. coli”. Perspect Biol Med 67-70Google Scholar
  26. 26. Csete ME, Doyle JC (2002) Reverse engineering of biological complexity. Science 295:1664-1669CrossRefPubMedGoogle Scholar
  27. 27. de Jong H (2002) Modeling and simulation of genetic regulatory systems: a literature review. J Computat Biol 9:67-103CrossRefGoogle Scholar
  28. 28. DiValentin, P SigTran (2004) Scholar
  29. 29. Duncan J, Arnstein L, Li Z (2004) Teranode corporation launches first industrial-strength research design tools for the life sciences at DEMO: Scholar
  30. 30. Endy D, Brent R (2001) Modelling cellular behaviour. Nature Suppl 409:391-395CrossRefGoogle Scholar
  31. 31. Fall C, Marland ES, Wagner JM, Tyson JJ (2002) Computational cell biology. Springer-Verlag, New YorkGoogle Scholar
  32. 32. Fink CC, Slepchenko B, Moraru II, Watras J, Schaff JC, Loew LM (2000) An image-based model of calcium waves in differentiated neuroblastoma cells. Biophys J 79:163-83PubMedGoogle Scholar
  33. 33. Finney A, Hucka M, Sauro H, Bolouri H, Funahashi A, Bornstein B, Kovitz B, Matthews J, Shapiro BE, Keating S, Doyle J, Kitano H (2003) The systems biology workbench (SBW) Version 1.0: Framework and modules. Hawaii, USA. Pacific symposium on biocomputing 2003Google Scholar
  34. 34. Finney AM, Hucka M (2003) Systems Biology Markup Language: Level 2 and beyond. Biochem Soc Trans 31:1472-1473PubMedGoogle Scholar
  35. 35. Fraser SE, Harland RM (2000) The molecular metamorphosis of experimental embryology. Cell 100:41-55CrossRefPubMedGoogle Scholar
  36. 36. Funahashi A, Tanimura N, Morohashi M, Kitano H (2003) CellDesigner: a process diagram editor for gene-regulatory and biochemical networks. BioSilico 1:159-162CrossRefGoogle Scholar
  37. 37. Funahashi A, Tanimura N, Morohashi M, Kitano H (2004) CellDesigner; Scholar
  38. 38. Galperin MY, Koonin EV (1998) Sources of systematic error in functional annotation of genomes: domain rearrangement, non-orthologous gene displacement and operon disruption. In Silico Biol 1:55-67PubMedGoogle Scholar
  39. 39. Garfinkel D (1965) Simulation of biochemical systems. In: Stacy, Ralph W and Waxman, BD (eds) Computers in biomedical research. Academic Press, New York, pp 111-134Google Scholar
  40. 40. Gershenfeld NA (1998) The nature of mathematical modeling. Cambridge University Press, CambridgeGoogle Scholar
  41. 41. Gilks WR, Audit B, De Angelis D, Tsoka S, Ouzounis CA (2002) Modeling the percolation of annotation errors in a database of protein sequences. Bioinformatics 18:1641-9CrossRefPubMedGoogle Scholar
  42. 42. Gillespie DT (1977) Exact stochastic simulation of coupled chemical-reactions. J Phys Chem 81:2340-2361CrossRefGoogle Scholar
  43. 43. Gillespie DT, Petzold LR (2003) Improved leap-size selection for accelerated stochastic simulation. J Chem Phys 119:8229-8234CrossRefGoogle Scholar
  44. 44. Glasner JD, Liss P, Plunkett G III, Darling A, Prasad T, Rusch M, Byrnes A, Gilson M, Biehl B, Blattner FR, Perna NT (2003) ASAP, a systematic annotation package for community analysis of genomes; Nucleic Acids Res 31:147-151CrossRefPubMedGoogle Scholar
  45. 45. Goldstein B, Faeber JR, Hlavacek WS, Blinov ML, Redondo A, Wolfsy C (2002) Modeling the early signaling events mediated by FceRI. Mol Immunol137:1-7Google Scholar
  46. 46. Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402:C47-C52CrossRefPubMedGoogle Scholar
  47. 47. Holden C (2002) Cell biology: Alliance launched to model E. coli. Science 297:1459-1460CrossRefPubMedGoogle Scholar
  48. 48. Hood L (1998) Systems biology: New opportunities arising from genomics, proteomics, and beyond. Exp Hematol 26:681PubMedGoogle Scholar
  49. 49. Hucka M, Finney A, Sauro HM, Bolouri H (2001) Systems Biology Markup Language (SBML) Level 1: Structures and facilities for basic model definitions; Scholar
  50. 50. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, Bray D, Cornish-Bowden A, Cuellar AA, Dronov S, Gilles ED, Ginkel M, Gor V, Goryanin II, Hedley WJ, Hodgman TC, Hofmeyr JH, Hunter PJ, Juty NS, Kasberger JL, Kremling A, Kummer U, Le Novere N, Loew LM, Lucio D, Mendes P, Minch E, Mjolsness ED, Nakayama Y, Nelson MR, Nielsen PF, Sakurada T, Schaff JC, Shapiro BE, Shimizu TS, Spence HD, Stelling J, Takahashi K, Tomita M, Wagner J, Wang J (2003) The Systems Biology Markup Language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19:524-531CrossRefPubMedGoogle Scholar
  51. 51. Ideker T, Galitski T, Hood L (2001) A new approach to decoding life: systems biology. Annu Rev Genomics Hum Genet 2:343-372CrossRefPubMedGoogle Scholar
  52. 52. Jishage M, Ishihama A (1997) Variation in RNA polymerase sigma subunit composition within different stocks of Escherichia coli W3110. J Bacteriol 179:959-963PubMedGoogle Scholar
  53. 53. Kacser H (1957) Appendix: Some physico-chemical aspects of biological organisation. In: Waddington CH (ed) The strategy of the genes: A discussion of some aspects of theoretical biology. George Allen and Unwin Ltd, London, pp 191-249Google Scholar
  54. 54. Kacser H, Burns JA (1967) Causality, complexity and computers. In: Locker A (ed) Quantitative biology of metabolism. Springer-Verlag, New York, NY, pp 11-23Google Scholar
  55. 55. Kang Y, Durfee T, Glasner JD, Qiu Y, Frisch D, Winterberg KM, Blattner FR (2004) Systematic mutagenesis of the Escherichia coli genome. J Bacteriol 186:4921-4930CrossRefPubMedGoogle Scholar
  56. 56. Karp PD, Riley M, Saier M, Paulsen IT, Collado-Vides J, Paley SM, Pellegrini-Toole A, Bonavides C, Gama-Castro S (2002) The EcoCyc database; Nucleic Acids Res 30:56-58CrossRefPubMedGoogle Scholar
  57. 57. Kihara D, Skolnick J (2004) Microbial genomes have over 72% structure assignment by the threading algorithm PROSPECTOR_Q. Proteins 55:464-473CrossRefPubMedGoogle Scholar
  58. 58. Kirkwood TBL, Boys R, Wilkinson D, Gillespie C, Proctor C, Hanley D (2003a) BASIS; 3-19-2004aGoogle Scholar
  59. 59. Kirkwood TBL, Boys RJ, Gillespie CS, Proctor CJ, Shanley DP, Wilkinson DJ (2003b) Towards an e-biology of ageing: integrating theory and data. Nature Reviews Molecular Cell Biology 4:243-249CrossRefPubMedGoogle Scholar
  60. 60. Kitano H (2002) Computational systems biology. Nature 420:206-210CrossRefPubMedGoogle Scholar
  61. 61. Kitano H (2001) Foundations of systems biology. MIT Press, Cambridge, MAGoogle Scholar
  62. 62. Kornberg A (2003) Ten commandments of enzymology, amended. Trends Biochem Sci 28:515-517CrossRefPubMedGoogle Scholar
  63. 63. Kornberg A, Baker TA (1992) DNA replication. WH Freeman and Company, San Francisco, CaliforniaGoogle Scholar
  64. 64. Le Novere N, Shimizu TS (2001) STOCHSIM: modelling of stochastic biomolecular processes. Bioinformatics 17:575-576CrossRefPubMedGoogle Scholar
  65. 65. May RM (2004) Uses and abuses of mathematics in biology. Science 303:790-793CrossRefPubMedGoogle Scholar
  66. 66. McAdams HH, Arkin A (1999) It's a noisy business! Genetic regulation at the nanomolar scale. Trends Genet 15:65-69CrossRefPubMedGoogle Scholar
  67. 67. Medigue C, Viari A, Henaut A, Danchin A (1993) Colibri: a functional data base for the Escherichia coli genome. Microbiol Rev 57:623-654PubMedGoogle Scholar
  68. 68. Mendes P (2001) Gepasi 3.21; http://www.gepasi.orgGoogle Scholar
  69. 69. Mendes P (2003) COPASI: Complex pathway simulator; Scholar
  70. 70. Mendes P (1993) Gepasi - a software package for modeling the dynamics, steady-states and control of biochemical and other systems. Comput Appl Biosci 9:563-571PubMedGoogle Scholar
  71. 71. Mendes P, Kell DB (2001) MEG (Model Extender for Gepasi): a program for the modelling of complex, heterogeneous, cellular systems. Bioinformatics 17:288-289CrossRefPubMedGoogle Scholar
  72. 72. Mesarovic MD (1968) Systems theory and biology. Proceedings of the 3rd Systems Symposium at Case Institute of Technology. Springer-Verlag, Berlin, New YorkGoogle Scholar
  73. 73. Mori H, Isono K, Horiuchi T, Miki T (2000) Functional genomics of Escherichia coli in Japan. Res Microbiol 151:121-128CrossRefPubMedGoogle Scholar
  74. 74. Morton-Firth CJ, Bray D (1998) Predicting temporal fluctuations in an intracellular signalling pathway. J Theor Biol 192:117-128CrossRefPubMedGoogle Scholar
  75. 75. Noble D (2002) The rise of computational biology. Nat Rev Mol Cell Biol 3:460-463CrossRefGoogle Scholar
  76. 76. Phair RD, Misteli T (2001) Kinetic modelling approaches to in vivo imaging. Nat Rev Mol Cell Biol 2:898-907CrossRefPubMedGoogle Scholar
  77. 77. Ramsey S, Bolouri H (2004) Dizzy; Google Scholar
  78. 78. Rudd KE (2000) EcoGene: a genome sequence database for Escherichia coli K-12. Nucleic Acids Res 28:60-64CrossRefPubMedGoogle Scholar
  79. 79. Salgado H, Gama-Castro S, Martinez-Antonio A, Diaz-Peredo E, Sanchez-Solano F, Peralta-Gil M, Garcia-Alonso D, Jimenez-Jacinto V, Santos-Zavaleta A, Bonavides-Martinez C, Collado-Vides J (2004) RegulonDB (version 4.0): transcriptional regulation, operon organization and growth conditions in Escherichia coli K-12; Nucleic Acids Res 32:D303-D306CrossRefPubMedGoogle Scholar
  80. 80. Sauro HM (2003) WinScamp; hsauro/Scamp/scamp.htm Google Scholar
  81. 81. Sauro HM (2000b) Jarnac; hsauro Google Scholar
  82. 82. Sauro HM (2000a) Jarnac: A system for interactive metabolic analysis. Snoep JL, Hofmeyr JH, and Roywer JM; Animating the Cellular Map: Proceedings of the 9th International Meeting on BioThermoKinetics. Stellenbosch University Press Google Scholar
  83. 83. Sauro HM, Fell DA (1991) SCAMP: A metabolic simulator and control analysis program. Mathl Comput Modelling 15:15-28CrossRefGoogle Scholar
  84. 84. Sauro HM, Hucka M, Finney A, Wellock C, Bolouri H, Doyle J, Kitano H (2003) Next generation simulation tools: The systems biology workbench and BioSPICE integration. OMICS 7:355-372CrossRefPubMedGoogle Scholar
  85. 85. Sauro HS (2001) JDesigner: A simple biochemical network designer; Google Scholar
  86. 86. Savageau MA (1969) Biochemical systems analysis.1. Some mathematical properties of rate law for component enzymatic reactions. J Theor Biol 25:365-366PubMedGoogle Scholar
  87. 87. Savageau MA (1970) Biochemical systems analysis .3. Dynamic solutions using a power-law approximation. J Theor Biol 26:215PubMedGoogle Scholar
  88. 88. Schaff J, Fink CC, Slepchenko B, Carson JH, Loew LM (1997) A general computational framework for modeling cellular structure and function. Biophys J 73:1135-1146PubMedGoogle Scholar
  89. 89. Schaff J, Slepchenko B, Morgan F, Wagner J, Resasco D, Shin D, Choi YS, Loew L, Carson J, Cowan A, Moraru I, Watras J, Teraski M, Fink C (2001) Virtual Cell; Google Scholar
  90. 90. Schilstra M, Bolouri H (2002) NetBuilder; Google Scholar
  91. 91. Serres MH, Goswami S, Riley M (2004) GenProtEC: an updated and improved analysis of functions of Escherichia coli K-12 proteins; Nucleic Acids Res 32:D300-D302CrossRefPubMedGoogle Scholar
  92. 92. Shapiro BE (2004) MathSBML; Google Scholar
  93. 93. Shapiro BE, Hucka M, Finney A, Doyle JC (2004a) MathSBML: A package for manipulating SBML-based biological models. Bioinformatics 20:2829-2831CrossRefPubMedGoogle Scholar
  94. 94. Shapiro BE, Levchenko A, Meyerowitz EM, Wold BJ, Mjolsness ED (2003) Cellerator: extending a computer algebra system to include biochemical arrows for signal transduction simulations. Bioinformatics 19:677-678CrossRefPubMedGoogle Scholar
  95. 95. Shapiro BE, Mjolsness E, Levchenko A (2004b) Cellerator; Scholar
  96. 96. Slepchenko BM, Schaff JC, Carson JH, Loew LM (2002) Computational cell biology: Spatiotemporal simulation of cellular events. Annu Rev Biophys Biomol Struct 31:423-441CrossRefPubMedGoogle Scholar
  97. 97. Stelling J, Kremling A, Ginkel M, Bettenbrock K, Gilles E (2001) Towards a virtual biological laboratory. In: Kitano H (ed) Foundations of systems biology. MIT Press, Cambridge, MA, pp 189-212Google Scholar
  98. 98. Takahashi K, Ishikawa N, Sadamoto Y, Sasamoto H, Ohta S, Shiozawa A, Miyoshi F, Naito Y, Nakayama Y, Tomita M (2003) E-Cell 2: Multi-platform E-Cell simulation system. Bioinformatics 19:1727-1729CrossRefPubMedGoogle Scholar
  99. 99. Teranode Inc. (2004)VLX Design Suite Google Scholar
  100. 100. Tomita M (2001) Towards computer aided design (CAD) of useful microorganisms. Bioinformatics 17:1091-1092CrossRefPubMedGoogle Scholar
  101. 101. Tomita M, Hashimoto K, Takahashi K, Shimizu TS, Matsuzaki Y, Miyoshi F, Saito K, Tanida S, Yugi K, Venter JC, Hutchison CA, III (1999) E-CELL: software environment for whole-cell simulation. Bioinformatics 15:72-84CrossRefPubMedGoogle Scholar
  102. 102. Tomita M, Nakayama Y, Naito Y, Shimizu T, Hashimoto K, Takahashi K, Matsuzaki Y, Yugi K, Miyoshi F, Saito Y, Kuroki A, Ishida T, Iwata T, Yoneda M, Kita M, Yamada Y, Wang E, Seno S, Okayama M, Kinoshita A, Fujita Y, Matsuo R, Yanagihara T, Watari D, Ishinabe S, Miyamoto S (2001) E-CELL; Scholar
  103. 103. Tyson JJ, Chen K, Novak B (2001) Network dynamics and cell physiology. Nat Rev Mol Cell Biol 2:908-916CrossRefPubMedGoogle Scholar
  104. 104. Vass M, Shaffer CA, Tyson JJ, Ramakrishnan N, Watson LT (2004) The JigCell model builder: a tool for modeling intra-cellular regulatory networks. Bioinformatics 20:3680-3681PubMedGoogle Scholar
  105. 105. Verma M, Egan JB (1985) Phenotypic variations in strain AB1157 cultivars of Escherichia coli from different sources. J Bacteriol 164:1381-1382PubMedGoogle Scholar
  106. 106. Wiener N (1961) Cybernetics; or, control and communication in the animal and the machine, 2nd edn. MIT Press, New YorkGoogle Scholar
  107. 107. Yi TM, Huang Y, Simon MI, Doyle J (2000) Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proc Natl Acad Sci USA 97:4649-4653CrossRefPubMedGoogle Scholar
  108. 108. Zerhouni E (2003) The NIH roadmap. Science 302:63-64CrossRefPubMedGoogle Scholar

Authors and Affiliations

  • Barry L. Wanner
    • 1
    Email author
  • Andrew Finney
    • 2
  • Michael Hucka
    • 3
  1. 1.Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-2054USA
  2. 2.Science and Technology Research Institute, University of Hertfordshire, Hatfield, AL10 9ABUK
  3. 3.Control and Dynamical Systems, California Institute of Technology, Pasadena, CA 91125-8100USA

Personalised recommendations