Metabolic Control Analysis

  • David A. FellEmail author
Part of the Topics in Current Genetics book series (TCG, volume 13)


Metabolic Control Analysis (MCA) is a theoretical framework for investigating and understanding control and regulation of metabolism. In particular, it relates the properties of metabolic systems to the kinetic characteristics of the component enzymes. However, not all of the properties of enzymes strongly influence the be-haviour of metabolic systems, some of which is generic and is reviewed here. It is argued that MCA is an important component of systems biology that still has much to offer in the development of predictive and integrative biology and the linking of genome to phenotype.


System Biology Metabolic Network Metabolite Concentration Metabolic Flux Metabolic System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1. Brand MD, Hafner RP, Brown GC (1988) Control of respiration in non-phosphorylating mitochondria is not shared between the proton leak and the respiratory chain. Biochem J 255:535-539PubMedGoogle Scholar
  2. 2. Brown GC (1994) Control analysis applied to the whole body: Control by body organs over plasma concentrations and organ fluxes of substances in the blood. Biochem J 297:115-122PubMedGoogle Scholar
  3. 3. Buttgereit F, Brand MD (1995) A hierarchy of ATP-consuming processes in mammalian cells. Biochem J 312:163-167PubMedGoogle Scholar
  4. 4. Cascante M, Boros LG, Comin-Anduix B, de Atauri P, Centelles JJ, Lee PWN (2002) Metabolic control analysis in drug discovery and disease. Nat Biotechnol 20:243-249CrossRefPubMedGoogle Scholar
  5. 5. Cornish-Bowden A, Cárdenas ML (2001) Information transfer in metabolic pathways. Ef-fects of irreversible steps in computer models. Eur J Biochem 268:6616-6624CrossRefPubMedGoogle Scholar
  6. 6. Cornish-Bowden A, Hofmeyr JHS (1994) Determination of control coefficients in intact metabolic systems. Biochem J 298(Mar):367-375PubMedGoogle Scholar
  7. 7. Crabtree B, Newsholme EA (1985) A quantitative approach to metabolic control. Curr Top Cell Regul 25:21-76PubMedGoogle Scholar
  8. 8. Eisenthal R, Cornish-Bowden A (1998) Prospects for antiparasitic drugs: The case of Try-panosoma brucei, the causative agent of African sleeping sickness. J Biol Chem 273:5500-5505CrossRefPubMedGoogle Scholar
  9. 9. Fell DA (1997) Understanding the Control of Metabolism. Portland Press, LondonGoogle Scholar
  10. 10. Fell DA (2000) Signal transduction and the control of expression of enzyme activity. Ad-van Enzym Regul 40:35-46Google Scholar
  11. 11. Fell DA (2001) Beyond genomics. Trends Genet 17:680-682CrossRefPubMedGoogle Scholar
  12. 12. Fell DA, Sauro HM (1985) Metabolic Control Analysis: Additional relationships between elasticities and control coefficients. Eur J Biochem 148:555-561CrossRefPubMedGoogle Scholar
  13. 13. Fell DA, Thomas S (1995) Physiological control of flux: the requirement for multisite modulation. Biochem J 311:35-39PubMedGoogle Scholar
  14. 14. Groen AK, van der Meer R, Westerhoff HV, Wanders RJA, Akerboom TPM, Tager JM (1982) Control of metabolic fluxes. Metabolic Compartmentation, ed. Sies H, Aca-demic Press, London, pp. 9-37Google Scholar
  15. 15. Heinrich R, Rapoport TA (1974) A linear steady-state treatment of enzymatic chains; gen-eral properties, control and effector strength. Eur J Biochem 42:89-95CrossRefPubMedGoogle Scholar
  16. 16. Hofmeyr JHS, Cornish-Bowden A (1991) Quantitative assessment of regulation in meta-bolic systems. Eur J Biochem 200:223-236CrossRefPubMedGoogle Scholar
  17. 17. Hofmeyr JHS, Cornish-Bowden A (2000) Regulating the cellular economy of supply and demand. FEBS Lett 476:47-51CrossRefPubMedGoogle Scholar
  18. 18. Ideker T, Thorsson V, Ranish JA, Christmas R, Buhler J, Eng JK, Bumgarner R, Goodlett DR, Aebersold R, Hood L (2001) Integrated genomic and proteomic analyses of a sys-tematically perturbed metabolic network. Science 292:929-934CrossRefPubMedGoogle Scholar
  19. 19. Ihmels J, Levy R, Barkai N (2004) Principles of transcriptional control in the metabolic network of Saccharomyces cerevisiae. Nat Biotechnol 22:86-92CrossRefPubMedGoogle Scholar
  20. 20. Jensen PR, Van der Weijden CC, Jensen LB, Westerhoff HV, Snoep JL (1999) Extensive regulation compromises the extent to which DNA gyrase controls DNA supercoiling and growth rate of Escherichia coli. Eur J Biochem 266:865-877CrossRefPubMedGoogle Scholar
  21. 21. Kacser H, Acerenza L (1993) A universal method for achieving increases in metabolite production. Eur J Biochem 216:361-367CrossRefPubMedGoogle Scholar
  22. 22. Kacser H, Beeby R (1984) Evolution of catalytic proteins or on the origin of enzyme spe-cies by means of natural selection. J Mol Evol 20:38-51CrossRefPubMedGoogle Scholar
  23. 23. Kacser H, Burns JA (1973) The control of flux. Symp Soc Exp Biol 27:65-104. Reprinted in Biochem Soc Trans (1995) 23:341-366Google Scholar
  24. 24. Kacser H, Burns JA (1979) Molecular democracy: who shares the controls? Biochem Soc Trans 7:1149-1160PubMedGoogle Scholar
  25. 25. Kacser H, Burns JA (1981) The molecular basis of dominance. Genetics 97:639-666PubMedGoogle Scholar
  26. 26. Kahn D, Westerhoff HV (1991) Control theory of regulatory cascades. J Theor Biol 153:255-285PubMedGoogle Scholar
  27. 27. Klipp E, Heinrich R (1999) Competition for enzymes in metabolic pathways: Implications for optimal distributions of enzyme concentrations and for the distribution of flux con-trol. Biosystems 54:1-14CrossRefPubMedGoogle Scholar
  28. 28. Korzeniewski B (2003) Regulation of oxidative phosphorylation in different muscles and various experimental conditions. Biochem J 375:799-804CrossRefPubMedGoogle Scholar
  29. 29. Korzeniewski B, Harper ME, Brand MD (1995) Proportional activation coefficients during stimulation of oxidative phosphorylation by lactate and pyruvate or vasopressin. Bio-chim Biophys Acta 1229:315-322Google Scholar
  30. 30. Krauss S, Brand MD (2000) Quantitation of signal transduction. FASEB J 14:2581-2588CrossRefPubMedGoogle Scholar
  31. 31. Newsholme EA, Start C (1973) Regulation in Metabolism. Wiley and Sons, LondonGoogle Scholar
  32. 32. Orr HA (1991) A test of Fisher's theory of dominance. Proc Natl Acad Sci USA 88:11413-11415PubMedGoogle Scholar
  33. 33. Peletier MA, Westerhoff HV, Kholodenko BN (2003) Control of spatially heterogeneous and time-varying cellular reaction networks: A new summation law. J Theor Biol 225:477-487CrossRefPubMedGoogle Scholar
  34. 34. Raamsdonk LM, Teusink B, Broadhurst D, Zhang NS, Hayes A, Walsh MC, Berden JA, Brindle KM, Kell DB, Rowland JJ, Westerhoff HV, Dam KV, Oliver SG (2001) A functional genomics strategy that uses metabolome data to reveal the phenotype of si-lent mutations. Nat Biotechnol 19:45-50CrossRefPubMedGoogle Scholar
  35. 35. Reder C (1988) Metabolic control theory: a structural approach. J Theor Biol 135:175-201PubMedGoogle Scholar
  36. 36. Savageau MA (1976) Biochemical Systems Analysis: a Study of Function and Design in Molecular Biology. Addison-Wesley, Reading, MassGoogle Scholar
  37. 37. Schafer JRA, Fell DA, Rothman D, Shulman RG (2004) Protein phosphorylation can regu-late metabolite concentrations rather than control flux: The example of glycogen syn-thase. Proc Natl Acad Sci USA 101:1485-1490CrossRefPubMedGoogle Scholar
  38. 38. Schuster S, Kahn D, Westerhoff HV (1993) Modular analysis of the control of complex metabolic pathways. Biophys Chem 48(1):1-17CrossRefPubMedGoogle Scholar
  39. 39. Schuster S, Klamt S, Weckwerth W, Moldenhauer F, Pfieffer T (2002) Use of network analysis of metabolic systems in bioengineering. Bioprocess Biosyst Eng 24:363-372CrossRefGoogle Scholar
  40. 40. Small JR, Kacser H (1993) Responses of metabolic systems to large changes in enzyme ac-tivities and effectors. 1. the linear treatment of unbranched chains. Eur J Biochem 213:613-624CrossRefPubMedGoogle Scholar
  41. 41. ter Kuile BH (1996) Metabolic adaptation of Trichomonas vaginalis to growth rate and glucose availability. Microbiology 142:3337-3345PubMedGoogle Scholar
  42. 42. ter Kuile BH, Westerhoff HV (2001) Transcriptome meets metabolome: Hierarchical and metabolic regulation of the glycolytic pathway. FEBS Lett 500:169-171CrossRefPubMedGoogle Scholar
  43. 43. Thomas, S, Fell, DA (1996) Design of metabolic control for large flux changes. J. Theor Biol 182: 285-298CrossRefGoogle Scholar
  44. 44. Vogt AM, Poolman M, Ackermann C, Yildiz M, Schoels W, Fell DA, Kubler W (2002) Regulation of glycolytic flux in ischemic preconditioning - A study employing meta-bolic control analysis. J Biol Chem 277:24411-24419CrossRefPubMedGoogle Scholar
  45. 45. Weibel ER (2000) Symmorphosis. On Form and Function in Shaping Life. Harvard Uni-versity Press, CambridgeGoogle Scholar
  46. 46. Weibel ER, Taylor CR, Hoppeler H (1991) The concept of symmorphosis: a testable hy-pothesis of structure-function relationship. Proc Natl Acad Sci USA 88:10357-10361PubMedGoogle Scholar

Authors and Affiliations

  1. 1.School of Biological & Molecular Sciences, Oxford Brookes University, Headington, Oxford OX3 0BPUK

Personalised recommendations