Scientific and technical challenges for systems biology

  • Hiroaki KitanoEmail author
Part of the Topics in Current Genetics book series (TCG, volume 13)


Systems biology is an emergent discipline, yet can be rooted back almost a century when pioneering thoughts on system-oriented views were discussed. System-level understanding of life has consistently been a subject of the broad scientific community. With the progress of various molecular biology and genomics research, combined with advances in control theory, software, and computer science, we are now able to tackle this problem with renewed perspectives and powerful techniques. One of the significant questions is what is underlying principles of living systems. This paper argues that ”robustness” is one of the fundamental properties of evolved biological systems and there are certain principles that govern biological systems at the system-level. Such a principle also provides us with insight into diseases and possible countermeasures.


Computational Fluid Dynamic System Biology System Biology Markup Language Process Diagram Integral Feedback 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1. Agrawal AA (2001) Phenotypic plasticity in the interactions and evolution of species. Science 294:321-326CrossRefPubMedGoogle Scholar
  2. 2. Alon U, Surette MG, Barkai N, Leibler S (1999) Robustness in bacterial chemotaxis. Nature 397:168-171CrossRefPubMedGoogle Scholar
  3. 3. Bak P, Tang C, Wiesenfeld K (1988) Self-organized criticality. Phys Rev A 38:364-374CrossRefPubMedGoogle Scholar
  4. 4. Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell's functional organization. Nat Rev Genet 5:101-113CrossRefPubMedGoogle Scholar
  5. 5. Barkai N, Leibler S (1997) Robustness in simple biochemical networks. Nature 387:913-917CrossRefPubMedGoogle Scholar
  6. 6. Bertalanffy LV (1968) General System Theory. New York, George BrazillerGoogle Scholar
  7. 7. Bhalla US, Iyengar R (1999) Emergent properties of networks of biological signaling pathways. Science 283:381-387Google Scholar
  8. 8. Cannon W (1932) The Wisdom of the Body. New York, NortonGoogle Scholar
  9. 9. Carlson JM, Doyle J (1999) Highly optimized tolerance: a mechanism for power laws in designed systems. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 60:1412-1427PubMedGoogle Scholar
  10. 10. Carlson JM, Doyle J (2002) Complexity and robustness. Proc Natl Acad Sci USA 99 Suppl 1:2538-2545CrossRefGoogle Scholar
  11. 11. Chen KC, Calzone L, Csikasz-Nagy A, Cross FR, Novak B, Tyson JJ (2004) Integrative analysis of cell cycle control in budding yeast. Mol Biol Cell 15:3841-62CrossRefPubMedGoogle Scholar
  12. 12. Cook DL, Farley JF, Tapscott SJ (2001) A basis for a visual language for describing archiving and analyzing functional models of complex biological systems. Genome Biol 2:RESEARCH0012CrossRefPubMedGoogle Scholar
  13. 13. Csete ME, Doyle J (2004) Bow ties metabolism and disease. Trends Biotechnol 22:446-50CrossRefPubMedGoogle Scholar
  14. 14. de Visser JA, Hermisson J, Wagner GP, Ancel Meyers L, Bagheri-Chaichian H, Blanchard JL, Chao L, Cheverud JM, Elena SF, Fontana W, Gibson G, Hansen TF, Krakauer D, Lewontin RC, Ofria C, Rice SH, von Dassow G, Wagner A, Whitlock MC (2003) Evolution and detection of genetics robustness. Evolution 57:1959-1972PubMedGoogle Scholar
  15. 15. Dropulic B, Hermankova M, Pitha PM (1996) A conditionally replicating HIV-1 vector interferes with wild-type HIV-1 replication and spread. Proc Natl Acad Sci USA 93:11103-11108CrossRefPubMedGoogle Scholar
  16. 16. Eldar A, Dorfman R, Weiss D, Ashe H, Shilo BZ, Barkai N (2002) Robustness of the BMP morphogen gradient in Drosophila embryonic patterning. Nature 419:304-308CrossRefPubMedGoogle Scholar
  17. 17. Ferrell JE Jr (2002) Self-perpetuating states in signal transduction: positive feedback double-negative feedback and bistability. Curr Opin Cell Biol 14:140-148CrossRefPubMedGoogle Scholar
  18. 18. Funahashi A, Kitano H (2003) Cell Designer: a process diagram editor for gene-regulatory and biochemical networks. Biosilico 1:159-162CrossRefGoogle Scholar
  19. 19. Guelzim N, Bottani S, Bourgine P, Kepes F (2002) Topological and causal structure of the yeast transcriptional regulatory network. Nat Genet 31:60-63CrossRefPubMedGoogle Scholar
  20. 20. Harris AL (2002) Hypoxia–a key regulatory factor in tumour growth. Nat Rev Cancer 2:38-47CrossRefPubMedGoogle Scholar
  21. 21. Hasty J, McMillen D, Collins JJ (2002) Engineered gene circuits. Nature 420:224-230CrossRefPubMedGoogle Scholar
  22. 22. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle J, Kitano H (2002) The ERATO Systems Biology Workbench: enabling interaction and exchange between software tools for computational biology. Pac Symp Biocomput 450-461Google Scholar
  23. 23. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, Bray D, Cornish-Bowden A, Cuellar AA, Dronov S, Gilles ED, Ginkel M, Gor V, Goryanin II, Hedley WJ, Hodgman TC, Hofmeyr JH, Hunter PJ, Juty NS, Kasberger JL, Kremling A, Kummer U, Le Novere N, Loew LM, Lucio D, Mendes P, Minch E, Mjolsness ED, Nakayama Y, Nelson MR, Nielsen PF, Sakurada T, Schaff JC, Shapiro BE, Shimizu TS, Spence HD, Stelling J, Takahashi K, Tomita M, Wagner J, Wang J; SBML Forum (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19:524-531CrossRefPubMedGoogle Scholar
  24. 24. Ideker T, Ozier O, Schwikowski B, Siegel AF (2002) Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18(Suppl 1):S233-S240PubMedGoogle Scholar
  25. 25. Ideker T, Thorsson V, Ranish JA, Christmas R, Buhler J, Eng JK, Bumgarner R, Goodlett DR, Aebersold R, Hood L (2001) Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292:929-934CrossRefPubMedGoogle Scholar
  26. 26. Ihmels J, Friedlander G, Bergmann S, Sarig O, Ziv Y, Barkai N (2002) Revealing modular organization in the yeast transcriptional network. Nat Genet 31:370-377PubMedGoogle Scholar
  27. 27. Kirschner M, Gerhart J (1998) Evolvability. Proc Natl Acad Sci USA 95:8420-8427CrossRefPubMedGoogle Scholar
  28. 28. Kitano H (2002a) Computational systems biology. Nature 420:206-210CrossRefPubMedGoogle Scholar
  29. 29. Kitano H (2002b) Systems biology: a brief overview. Science 295:1662-1664CrossRefPubMedGoogle Scholar
  30. 30. Kitano H (2003a) Cancer robustness: tumour tactics. Nature 426:125CrossRefPubMedGoogle Scholar
  31. 31. Kitano H (2003b) A graphical notation for biochemical networks. Biosilico 1:169-176CrossRefGoogle Scholar
  32. 32. Kitano H (2004a) Biological robustness. Nat Rev Genet 5:826-837CrossRefPubMedGoogle Scholar
  33. 33. Kitano H (2004b) Cancer as a robust system: implications for anticancer therapy. Nat Rev Cancer 4:227-235CrossRefPubMedGoogle Scholar
  34. 34. Kitano H, Oda K, Kimura T, Matsuoka Y, Csete M, Doyle J, Muramatsu M (2004) Metabolic syndrome and robustness trade-offs. Diabetes 53(Suppl 3):S1-S10Google Scholar
  35. 35. Kohn KW (1999) Molecular interaction map of the mammalian cell cycle control and DNA repair systems. Mol Biol Cell 10:2703-2734PubMedGoogle Scholar
  36. 36. Lahav G, Rosenfeld N, Sigal A, Geva-Zatorsky N, Levine AJ, Elowitz MB, Alon U (2004) Dynamics of the p53-Mdm2 feedback loop in individual cells. Nat Genet 36:147-150CrossRefPubMedGoogle Scholar
  37. 37. Little JW, Shepley DP, Wert DW (1999) Robustness of a gene regulatory circuit. EMBO J 18:4299-4307CrossRefPubMedGoogle Scholar
  38. 38. Maimon R, Browning S (2001) Diagrammatic notation and computational structure of gene networks. Proceedings of the Second International Conference on Systems Biology. Pasadena CAGoogle Scholar
  39. 39. Meir E, von Dassow G, Munro E, Odell GM (2002) Robustness flexibility and the role of lateral inhibition in the neurogenic network. Curr Biol 12:778-786CrossRefPubMedGoogle Scholar
  40. 40. Oda K. Kimura T, Matsuoka Y, Funahashi A, Muramatsu H, Kitano H (2004) Molecular interaction map of a macrophage. AfCS Research Reports 2:1-12Google Scholar
  41. 41. Pirson I, Fortemaison N, Jacobs C, Dremier S, Dumont JE, Maenhaut C (2000) The visual display of regulatory information and networks. Trends Cell Biol 10:404-408CrossRefPubMedGoogle Scholar
  42. 42. Queitsch C, Sangster TA, Lindquist S (2002) Hsp90 as a capacitor of phenotypic variation. Nature 417:618-624CrossRefPubMedGoogle Scholar
  43. 43. Rutherford SL (2003) Between genotype and phenotype: protein chaperones and evolvability. Nat Rev Genet 4:263-274CrossRefPubMedGoogle Scholar
  44. 44. Rutherford SL, Lindquist S (1998) Hsp90 as a capacitor for morphological evolution. Nature 396:336-342CrossRefPubMedGoogle Scholar
  45. 45. Schlichting C, Pigliucci M (1998) Phenotypic Evolution: A Reaction Norm Perspective. Sunderland, Sinauer Associates IncGoogle Scholar
  46. 46. Schlosser G, Wagner G (2004) Modularity in Development and Evolution. Chicago, The University of Chicago PressGoogle Scholar
  47. 47. Sharp FR, Bernaudin M (2004) HIF1 and oxygen sensing in the brain. Nat Rev Neurosci 5:437-448CrossRefPubMedGoogle Scholar
  48. 48. Siegal ML, Bergman A (2002) Waddington's canalization revisited: developmental stability and evolution. Proc Natl Acad Sci USA 99:10528-10532CrossRefPubMedGoogle Scholar
  49. 49. Tyson JJ, Chen K, Novak B (2001) Network dynamics and cell physiology. Nat Rev Mol Cell Biol 2:908-916CrossRefPubMedGoogle Scholar
  50. 50. von Dassow G, Meir E, Munro EM, Odell GM (2000) The segment polarity network is a robust developmental module. Nature 406:188-192CrossRefPubMedGoogle Scholar
  51. 51. Waddington CH (1957) The Strategy of the Genes: a Discussion of some Aspects of Theoretical Biology. New York, MacmillanGoogle Scholar
  52. 52. Wagner GP, Altenberg L (1996) Complex adaptations and the evolution of evolvability. Evolution 50:967-976Google Scholar
  53. 53. Weinberger LS, Schaffer DV, Arkin AP (2003) Theoretical design of a gene therapy to prevent AIDS but not human immunodeficiency virus type 1 infection. J Virol 77:10028-10036CrossRefPubMedGoogle Scholar
  54. 54. Wiener N (1948) Cybernetics: or Control and Communication in the Animal and the Machine. Cambridge, The MIT PressGoogle Scholar
  55. 55. Yi TM, Huang Y, Simon MI, Doyle J (2000) Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proc Natl Acad Sci USA 97:4649-4653CrossRefPubMedGoogle Scholar

Authors and Affiliations

  1. 1.Sony Computer Science Laboratories, Inc, 3-14-13 Higashi-Gotanda, Shinagawa, Tokyo 141-0022 Japan, and, The Systems Biology Institute, Suite 6A, M31 6-31-15 Jingumae, Shibuya, Tokyo 150-0001Japan

Personalised recommendations