Skip to main content

Toughness of Neat, Rubber Modified and Filled β-nucleated Polypropylene: from Fundamentals to Applications

  • Chapter
  • First Online:
Intrinsic Molecular Mobility and Toughness of Polymers II

Part of the book series: Advances in Polymer Science ((POLYMER,volume 188))

Abstract

This review highlights several aspects of the toughness of β-nucleated polypropylene (PP). The focus is on dynamic fracture properties, a topic which is largely documented in the literature. The role of intrinsic parameters like molecular weight, polydispersity and matrix randomization has been discussed, that of extrinsic factors like stress-state, processing conditions, test speed and temperature illustrated. Under defined conditions, the toughness is also defined by the content and spatial distribution of the β-nucleating agent. The increase in fracture resistance is more pronounced in PP homopolymers than in random or rubber-modified copolymers. In the case of sequential copolymers, the molecular architecture inhibits a maximization of the amount of β-phase; in that of heterophasic systems, the rubber phase mainly controls the fracture behavior. The performance of β-nucleated PP has been explained in terms of smaller spherulitic size, lower packing density and favorable lamellar arrangement of the β-modification which induce a higher mobility of both crystalline and amorphous phases. The damage process is accompanied by numerous microvoids, the development of which has been utilized for breathable films. Other interesting application segments are fibers, glass-fiber reinforced PP, thermoformable grades and piping systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

α-PP:

α-modification of isotactic polypropylene

β-PP:

β-modification of isotactic polypropylene

γ-PP:

γ-modification of isotactic polypropylene

αc :

high temperature relaxation of PP (DMA)

β:

angle relaxation at 0°C of PP (DMA)

β1 :

first β-phase during DSC heat scan

β2 :

second β-phase during DSC heat scan

γ:

high temperature relaxation of polypropylene (DMA)

ε:

strain

εcav/ε:

cavitational contribution to strain

εbreak :

elongation at break

ν i :

activation volume of the element motion unit for the process i

σy :

yield stress

θ:

angle

ΔH :

melt enthalpy (DSC)

ΔH(α):

melt enthalpy (DSC) of α-PP

ΔH(β):

melt enthalpy (DSC) of β-PP

ΔH 100%(α):

melt enthalpy (DSC) of 100% crystalline α-PP

ΔH 100%(β):

melt enthalpy (DSC) of 100% crystalline β-PP

ΔH i :

activation energy of the plastic flow for the mono-activated process i

Δpy :

difference between the plateau stress and the yield stress

a :

crack length

length of the a-parameter of a unit cell

b :

length of the b-parameter of a unit cell

c :

length of the c-parameter of a unit cell

d :

displacement

dε/dt :

strain rate

dF/dt :

initial slope of the force-time curve

dK/dt :

crack tip loading rate

f(a/W):

geometrical dimensionless factor

p C :

critical pressure

t :

time

v :

test speed

w e :

specific essential work of fracture

B :

thickness

Cw p :

specific non-essential work of fracture

D w :

average particle size in weight

E :

Young modulus, stiffness

E limit :

elasticity limit

F :

force

F max :

maximum of force

G α :

growth rate of α-phase

G β :

growth rate of β-phase

G C :

critical energy release rate (LEFM)

G D :

dynamic fracture resistance (LEFM)

G ini :

initiation energy

G plast :

plastic energy

G tot :

fracture energy

H :

height of a crystalline peak (WAXS)

IS :

impact strength

IV :

intrinsic viscosity

J Id :

resistance to fracture (Integral J)

K β :

β-content

K C :

(critical) stress intensity factor (LEFM)

K D :

dynamic fracture toughness (LEFM)

L :

lateral size of lamellae

LP :

lamellar long period

M n :

number average molecular weight

M w :

weight average molecular weight

MFR:

melt flow rate

MWD:

molecular weight distribution

NIS:

notched impact strength

dNIS:

double-edged notched impact strength

PI:

polydispersity

S:

order parameter of the β-phase

T :

temperature

T c :

crystallization temperature

T db :

temperature at which ductile-brittle transition occurs

T g :

glass transition temperature

T m :

melting temperature

V c :

cooling rate

W:

width

ZC:

size of diffuse whitened zone (on broken CT specimen)

ZI:

size of intense whitened zone (on broken CT specimen)

BSE:

back-scattering electron mode

CT:

compact tension

DMA:

dynamic mechanical analysis

DSC:

differential scanning calorimetry

EPR:

ethylene-propylene rubber

EWF:

essential work of fracture

LEFM:

linear elastic fracture mechanics

PP:

polypropylene

PP/EPR:

blend of PP and EPR, ethylene-propylene block copolymer

PTT:

phase transformation toughening

RCP:

rapid crack propagation

RuO4 :

ruthenium tetraoxyde

SCG:

slow crack growth

SEM:

scanning electron microscopy

TEM:

transmission electron microscopy

WAXS:

wide angle X-ray scattering

References

  1. Crissman (1969) J Polym Sci 7(A2):389

    CAS  Google Scholar 

  2. Fujiwara Y (1975) Colloid Polym Sci 253:273

    CAS  Google Scholar 

  3. Lovinger AJ, Chua JO, Gryte CC (1977) J Polym Sci Polym Phys Ed 15:641

    CAS  Google Scholar 

  4. Leugering HJ, Kirsch G (1973) Angew Makromol Chem 33:17

    CAS  Google Scholar 

  5. Devaux E, Chabert B (1991) Polym Commun 32:464

    CAS  Google Scholar 

  6. Devaux E, Gerard JF, Bourgin P, Chabert B (1993) Compos Sci Technol 48:199

    Article  CAS  Google Scholar 

  7. Varga J, Karger-Kocsis J (1993) Compos Sci Technol 48:191

    Article  CAS  Google Scholar 

  8. Varga J, Karger-Kocsis J (1993) Polym Bull (Berlin) 30:105

    CAS  Google Scholar 

  9. Varga J, Karger-Kocsis J (1995) Polymer 36:4877

    CAS  Google Scholar 

  10. Varga J, Karger-Kocsis J (1996) J Polym Sci Part B: Polym Phys Ed 34:657

    Article  CAS  Google Scholar 

  11. Jay F, Haudin JM, Monasse B (1999) J Mater Sci 34:2089

    Article  CAS  Google Scholar 

  12. Ellis G, Gomez MA, Marco C (2004) J Macromol Sci Phys 43:191

    Google Scholar 

  13. Leugering HJ (1967) Makromol Chem 109:204

    Article  CAS  Google Scholar 

  14. Kathan W (1986) DE Patent 3443599

    Google Scholar 

  15. Garbarczyk J, Paukszta D (1985) Colloid Polym Sci 236:985

    Google Scholar 

  16. Marcincin A, Ujhelyiova A, Marcincin K, Alexy P (1996) J Therm Anal 46:581

    CAS  Google Scholar 

  17. Ikeda N, Yoshimura M, Mizoguchi K, Kitagawa H, Kawashima Y, Sadamitsu K, Kawahara Y (1993) EP Patent 557721

    Google Scholar 

  18. Huang M, Li X, Fang B (1995) J Appl Polym Sci 56:1323

    CAS  Google Scholar 

  19. Wolfschwenger J, Bernreitner K (1995) EP Patent 682066

    Google Scholar 

  20. Kawai T, Iijima R, Yamamoto Y, Kimura T (2002) Polymer 43:7301

    Article  CAS  Google Scholar 

  21. Fujiyama M (1996) Intern Polym Process 11:271

    CAS  Google Scholar 

  22. Ye C, Liu J, Mo Z, Tang G, Jing X (1996) J Appl Polym Sci 60:1877

    CAS  Google Scholar 

  23. Li JX, Cheung WL (1997) J Vinyl Additive Technol 3:151

    CAS  Google Scholar 

  24. Kobayashi T, Killough L (1997) AddCon Asia '97, Int Plastics Additives and Modifiers Conf, Singapore

    Google Scholar 

  25. Berson AL, Claverie F, Drujon X, Lotz B, Wittmann JC, Thierry A (1998) EP Patent 887375

    Google Scholar 

  26. Varga J, Mudra I, Ehrenstein GW (1999) J Appl Polym Sci 74:2357

    Article  CAS  Google Scholar 

  27. Marco C, Gomez MA, Ellis G, Arribas JM (2002) J Appl Polym Sci 86:531

    Article  CAS  Google Scholar 

  28. Li X, Hu K, Ji M, Huang Y, Zhou G (2002) J Appl Polym Sci 86:633

    CAS  Google Scholar 

  29. Feng J, Chen M, Huang Z, Guo Y, Hu H (2002) J Appl Polym Sci 85:1742

    CAS  Google Scholar 

  30. Busch D, Kochem K, Schmitz B, Tews W (2003) WO Application 2003091316

    Google Scholar 

  31. Maeder D, Hoffmann K, Schmidt HW (2003) WO Application 2003102069

    Google Scholar 

  32. Fujiyama M (1995) Int Polym Process 10:172

    CAS  Google Scholar 

  33. Fujiyama M (1995) Int Polym Process 10:251

    CAS  Google Scholar 

  34. Fujiyama M (1996) Int Polym Process 11:159

    CAS  Google Scholar 

  35. Radhakrishnan S, Tapale M, Shah N, Rairkar E, Shirodkar V, Natu HP (1997) J Appl Polym Sci 64:1247

    Article  CAS  Google Scholar 

  36. Sterzynski T, Calo P, Lambla M, Thomas M (1997) Polym Eng Sci 37:1917

    Article  CAS  Google Scholar 

  37. Stocker W, Schumacher M, Graff S, Thierry A, Wittmann JC, Lotz B (1998) Macromolecules 31:807

    CAS  Google Scholar 

  38. Fujiyama M (1998) Int Polym Process 13:291

    CAS  Google Scholar 

  39. Fujiyama M (1998) Int Polym Process 13:406

    CAS  Google Scholar 

  40. Fujiyama M (1998) Int Polym Process 13:411

    CAS  Google Scholar 

  41. Mubarak Y, Martin PJ, Harkin-Jones E (2000) Plast Rubber Compos 29:307

    CAS  Google Scholar 

  42. Sterzynski T (2000) Polimery 45:786

    CAS  Google Scholar 

  43. Mathieu C, Thierry A, Wittmann IC, Lotz B (2002) J Polym Sci, Part B: Polym Phys 40:2504

    CAS  Google Scholar 

  44. Varga J, Schulek-Toth F, Pati M (1992) HU Patent 209132

    Google Scholar 

  45. Shi G, Cao Y, Zhang X, Hong J, Hua X (1992) Chin J Polym Sci 10:319

    CAS  Google Scholar 

  46. Zhang X, Shi G (1994) Thermochim Acta 235:49

    CAS  Google Scholar 

  47. Tjong SC, Shen JS, Li RKY (1995) Scr Metall Mater 33:503

    Article  CAS  Google Scholar 

  48. Tjong SC, Shen JS, Li RKY (1996) Polym Eng Sci 36:100

    CAS  Google Scholar 

  49. Wolfschwenger J, deMink P, Bernreitner K (1995) DE Patent 4420991

    Google Scholar 

  50. Tjong SC, Shen JS, Li RKY (1996) Polymer 37:2309

    Article  CAS  Google Scholar 

  51. Varga J, Schulek-Toth F (1996) J Therm Anal 47:941

    CAS  Google Scholar 

  52. Varga J, Ehrenstein (1997) Colloid Polym Sci 275:511

    Article  CAS  Google Scholar 

  53. Tjong SC, Li RKY, Cheung T (1997) Polym Eng Sci 37:166

    Article  CAS  Google Scholar 

  54. Tjong SC, Xu SA (1997) Polym Intern 44:95

    CAS  Google Scholar 

  55. Li JX, Cheung WL (1998) Polymer 39:6935

    CAS  Google Scholar 

  56. Varga J, Mudra I, Ehrenstein GW (1999) J Therm Anal Calorim 56:1047

    CAS  Google Scholar 

  57. Shi G, Zhang J, Jing H (1993) US Patent 5231126

    Google Scholar 

  58. Sterzynski T, Oysaed H (2004) Polym Eng Sci 44:2004

    Article  Google Scholar 

  59. Ikeda N, Yoshimura M, Mizoguchi K, Kimura Y (1995) EP Patent 632095

    Google Scholar 

  60. Davidson PMMcK, Biddiscombe HA, Govier RK, Ott MFM (1998) EP Patent 865913

    Google Scholar 

  61. Konrad R, Ebner K, Bernreitner K, Wolfschwenger J (2000) EP Patent 1044240

    Google Scholar 

  62. Busse K, Kressler J, Maier RD, Scherble J (2000) Macromolecules 33:8775

    Article  CAS  Google Scholar 

  63. Nezbedova E, Pospisil V, Bohaty P, Vlach B (2001) Macromol Symp 170:349

    Article  CAS  Google Scholar 

  64. Kotek J, Raab M, Baldrian J, Grellmann W (2002) J Appl Polym Sci 85:117

    Article  CAS  Google Scholar 

  65. Chu F, Kimura Y (1996) Polymer 37:573

    Article  CAS  Google Scholar 

  66. Cho K, Nabi Saheb D, Yang H, Kang BI, Kim J, Lee SS (2003) Polymer 44:4053

    CAS  Google Scholar 

  67. Scudla J, Raab M, Eichhorn KJ, Strachota A (2003) Polymer 44:4655

    Article  CAS  Google Scholar 

  68. Obadal M, Cermak R, Stoklasa K, Petruchova M (2003) Annu Tech Conf – Soc Plast Eng 61:1479

    Google Scholar 

  69. Romankiewicz A, Jurga J, Sterzynski T (2003) Macromol Symp 202:28

    Article  CAS  Google Scholar 

  70. Varga J (2002) J Macromol Sci Phys 41:1121

    Google Scholar 

  71. McGenity PM, Hooper JJ, Paynter CD, Riley AM, Nutbeem C, Elton NJ, Adams JM (1992) Polymer 33:5215

    Article  CAS  Google Scholar 

  72. Karger-Kocsis J, Varga J, Ehrenstein GW (1997) J Appl Polym Sci 64:2057

    Article  CAS  Google Scholar 

  73. Karger-Kocsis J, Putnoki I, Schopf A (1997) Plastic, Rubber Compos Process Appl 26:372

    CAS  Google Scholar 

  74. Karger-Kocsis J, Mouzakis DE, Ehrenstein GW, Varga J (1999) J Appl Polym Sci 73:1205

    Article  CAS  Google Scholar 

  75. Labour T, Vigier G, Séguéla R, Gauthier C, Orange G, Bomal Y (2001) J Polym Sci, Part B: Polym Phys 40:31

    Google Scholar 

  76. Tordjeman P, Robert C, Marin G, Gérard P (2001) Eur Phys J E 4:459

    Article  CAS  Google Scholar 

  77. Grein C, Plummer CJG, Kausch HH, Germain Y, Béguelin P (2002) Polymer 43:3279

    Article  CAS  Google Scholar 

  78. Chen HB, Karger-Kocsis J, Wu JS, Varga J (2002) Polymer 43:6505

    CAS  Google Scholar 

  79. Chan CM, Wu J, Li JX, Cheung YK (2002) Polymer 43:2981

    Article  CAS  Google Scholar 

  80. McGoldrick J, Liedauer S, Ek CG (2002) EP Patent 1260545

    Google Scholar 

  81. Karger-Kocsis J, Varga J, Drummer D (2002) J Macromol Sci Phys 41:881

    Google Scholar 

  82. Bernreitner K, Hauer A, Gubo R (2003) EP 1344793

    Google Scholar 

  83. Gahleitner M, Hesse A, Hauer A (2004) EP Patent 1382638

    Google Scholar 

  84. Kotek J, Kelnar I, Baldrian J, Raab M (2004) Eur Polym J 40:679

    CAS  Google Scholar 

  85. Natta G, Corradini P (1960) Del Nuovo Cimento Suppl 15:40

    CAS  Google Scholar 

  86. Turner Jones A, Aizlewood AM, Beckett DR (1964) Makromol Chem 75:13

    Google Scholar 

  87. Immirzi A (1980) Acta Cryst B36:2378

    CAS  Google Scholar 

  88. Mencik Z (1972) J Makromol Sci Phys B 6:101

    CAS  Google Scholar 

  89. Hikosaka M, Seto T (1973) Polym J 5:111

    CAS  Google Scholar 

  90. Guerra G, Petraconne V, Corradini P, De Rosa C, Napolitani R, Pizozzi B, Giunchi G (1984) J Polym Sci Polym Phys 22:1029

    CAS  Google Scholar 

  91. De Rosa C, Napolitani R, Pizozzi B (1984) Eur Polym J 20:937

    Google Scholar 

  92. Napolitano R, Pirozzi B, Varriale V (1990) J Polym Sci Polym Phys 28:139

    Article  CAS  Google Scholar 

  93. Norton DR, Keller A (1985) Polymer 26:704

    Article  CAS  Google Scholar 

  94. Lotz B, Wittmann JC (1986) J Polym Sci Polym Phys 24:1541

    CAS  Google Scholar 

  95. Keith HD, Padden FJJ, Walter NM, Wickhoff HW (1959) J Appl Phys 30:1485

    Article  CAS  Google Scholar 

  96. Brückner S, Meille SV, Petraconne V, Pirozzi B (1991) Prog Polym Sci 16:361

    Google Scholar 

  97. Meille SV, Ferro DR, Brückner S, Lovinger AJ, Padden FJ (1994) Macromolecules 27:2615

    Article  CAS  Google Scholar 

  98. Dorset DL, McCourt MP, Kopp S, Schumacher M, Okihara T, Lotz B (1998) Polymer 39:6331

    Article  CAS  Google Scholar 

  99. Lotz B, Wittmann JC, Lovinger AJ (1996) Polymer 37:4979

    Article  CAS  Google Scholar 

  100. Cartier L, Spassky N, Lotz B (1998) Macromolecules 31:3040

    CAS  Google Scholar 

  101. Cartier L, Lotz B (1998) Macromolecules 31:3049

    CAS  Google Scholar 

  102. Zhou G, He Z, Yu J, Han Z, Shi G (1986) Makrom Chem 187:633

    Article  CAS  Google Scholar 

  103. Li JX, Cheung WL, Demin J (1999) Polymer 40:1219

    CAS  Google Scholar 

  104. Shi G, Huang B, Zhang J (1984) Makromol Chem Rapid Commun 5:573

    CAS  Google Scholar 

  105. Monasse B, Haudin JM (1985) Colloid Polym Sci 263:822

    Article  CAS  Google Scholar 

  106. Clark EJ, Hoffman JD (1984) Macromolecules 17:878

    CAS  Google Scholar 

  107. Van Krevelen DW (1997) Properties of Polymers, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  108. Varga J, Garzo G (1991) Acta Chim Hung 128:303

    Google Scholar 

  109. Varga J, Mudra I, Ehrenstein GW (1998) Annu Tech Conf – Soc Plast Eng 56:3492

    Google Scholar 

  110. Varga J (1994) Crystallisation, melting and supermolecular structure of isotactic polypropylene. In: Karger-Kocsis J (ed) Polypropylene, Blends and Composites, Vol. I. Chapman and Hall, London, p 56

    Google Scholar 

  111. Grein C, Gahleitner M, Wolfschwenger J (in preparation)

    Google Scholar 

  112. Kausch HH (1987) Polymer Fracture, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  113. Lustiger A, Markham RL (1983) Polymer 24:1647

    Article  CAS  Google Scholar 

  114. Butler MF, Donald AM (1987) J Mater Sci 32:3675

    Google Scholar 

  115. Van der Wal A, Mulder JJ, Thijs HA, Gaymans RJ (1998) Polymer 39:5467

    Google Scholar 

  116. Karger-Kocsis J, Moos E, Mudra I, Varga J (1999) J Macromol Sci Phys 38:647

    Google Scholar 

  117. Dey SK, Agarwal PK (2001) Polyolefins 2001, Int Conf on Polyolefins, Houston, TX, 2001:441

    Google Scholar 

  118. Varma-Nair M, Agarwal PK (2000) J Therm Anal Calorim 59:483

    Article  CAS  Google Scholar 

  119. Zhang X, Shi G (1994) Polymer 35:5067

    CAS  Google Scholar 

  120. Busse K, Kressler J, Maier RD, Scherble J (2000) Macromolecules 33:8775

    Article  CAS  Google Scholar 

  121. Juhasz P, Varga J, Belina K (2002) J Makromol Sci Phys B41:1173

    CAS  Google Scholar 

  122. Fillon B, Thierry A, Wittmann JC, Lotz B (1993) J Polym Sci, Part B: Polym Phys 31:1407

    CAS  Google Scholar 

  123. Lotz B (1998) Polymer 39:4561

    Article  CAS  Google Scholar 

  124. Sterzynski T, Lambla M, Georgi F, Thomas M (1997) Int Polym Process 7:64

    Google Scholar 

  125. Baran N, Stoklasa K, Pospisil L (2000) Plasty a kaucuk 5:133

    Google Scholar 

  126. Garbarczyk J, Paukszka D (1981) Polymer 22:562

    Article  CAS  Google Scholar 

  127. Dos Santos Filho D, Oliveira CMF (1993) Makromol Chem 194:279

    Google Scholar 

  128. Takahashi T (2002) Sen'i Gakkaishi 58:357

    CAS  Google Scholar 

  129. Chen X, Wang Y, Wang X, Wu Z (1991) Int Polym Process 6:337

    CAS  Google Scholar 

  130. Kim S, Townsend EB (2002) Annu Tech Conf – Soc Plast Eng 60:2980

    Google Scholar 

  131. Fujiyama M, Kawamura Y, Wakino T, Okamoto T (1988) J Appl Polym Sci 36:985

    CAS  Google Scholar 

  132. Broda J (2003) J Appl Polym Sci 89:3364

    Article  CAS  Google Scholar 

  133. Broda J, Wlochowicz A (2000) Eur Polym J 36:1283

    CAS  Google Scholar 

  134. Broda J (2004) J Appl Polym Sci 91:1413

    Article  CAS  Google Scholar 

  135. Varga J (1989) J Therm Anal 35:1891

    CAS  Google Scholar 

  136. Scudla J, Eichhorn KJ, Raab M, Schmidt P, Jehnichen D, Haussler L (2002) Macromol Symp 184:371

    Article  CAS  Google Scholar 

  137. Varga J, Breining A, Ehrenstein GW, Bodor G (1999) Int Polym Process 14:358

    CAS  Google Scholar 

  138. Varga J, Breining A, Ehrenstein GW, Bodor G (1999) Int Polym Sci Technol 26:20

    Google Scholar 

  139. Li JX, Cheung WL (1997) J Mater Process Technol 63:472

    Google Scholar 

  140. Labour T, Gauthier C, Séguéla R, Vigier G, Bomal Y, Orange G (2001) Polymer 42:7127

    Article  CAS  Google Scholar 

  141. Roetling JA (1965) Polymer 6:311

    CAS  Google Scholar 

  142. Bauwens-Crowet C, Bauwens JA, Homès G (1969) J Polymer Sci A2(7):1745

    Google Scholar 

  143. Ward IM, Hadley DW (1993) An Introduction to the Mechanical Properties of Solid Polymers, 1st edn. Wiley, Chichester

    Google Scholar 

  144. Stachurski ZH (1997) Prog Polym Sci 22:407

    Article  CAS  Google Scholar 

  145. Varga J, Schulek Toth F (1991) Angew Makromol Chem 188:11

    CAS  Google Scholar 

  146. Labour T, Ferry L, Gauthier C, Haiji P, Vigier G (1999) J Appl Polym Sci 74:195

    Article  CAS  Google Scholar 

  147. Liu J, Wei X, Guo Q (1990) J Appl Polym Sci 41:2829

    CAS  Google Scholar 

  148. Dweik H, Al-Jabareen A, Marom G, Assouline E (2003) Int J Polym Mater 52:655

    CAS  Google Scholar 

  149. Lustiger A, Marzinsky CN, Mueller RR, Wagner HD (1997) 213th ACS National Meeting, San Francisco

    Google Scholar 

  150. Lustiger A, Marzinsky CN, Mueller RR, Wagner HD (1995) J Adhesion 53:1

    CAS  Google Scholar 

  151. Wagner HD, Lustiger A, Marzinsky CN, Mueller RR (1993) Compos Sci Technol 48:181

    Article  CAS  Google Scholar 

  152. Tjong SC, Li RKY (1997) J Vinyl Additive Technol 3:89

    CAS  Google Scholar 

  153. Mi Y, Chen X, Guo Q (1997) J Appl Polym Sci 64:1267

    Article  CAS  Google Scholar 

  154. Nunez AJ, Kenny JM, Reboredo MM, Aranguren MI, Marcovich NE (2002) Polym Eng Sci 42:733

    CAS  Google Scholar 

  155. Bhattacharya SK, Shembekar VR (1995) Macromol Reports A 32:485

    Google Scholar 

  156. Xie XL, Li RKY, Tjong SC, Mai YW (2002) Polym Composites 23:319

    Article  CAS  Google Scholar 

  157. Grady BP, Pompeo F, Shambaugh RL, Resasco DE (2002) J Phys Chem B 106:5852

    Article  CAS  Google Scholar 

  158. Jain S, Goossens H, Picchioni F, van Duin M (2003) Annu Tech Conf – Soc Plast Eng 61:1352

    Google Scholar 

  159. Perkins WG (1999) Polym Eng Sci 39:2445

    Article  CAS  Google Scholar 

  160. Walker I, Collyer AA (1994) Rubber toughening mechanisms in polymeric materials. In: Collyer AA (ed) Rubber Toughened Engineering Plastics. Chapman & Hall, London, p29

    Google Scholar 

  161. Bucknall CB (2000) Deformation mechanisms in rubber-toughened polymers. In: Paul DR and Bucknall CB (eds) Polymer Blends, Vol 2. Wiley, New York p 83

    Google Scholar 

  162. Gaymans RJ (2000) Toughening semicrystalline thermoplastics. In: Paul DR and Bucknall CB (eds) Polymer Blends, Vol 2. Wiley, New York p 177

    Google Scholar 

  163. Partridge IK (1992) Rubber Toughened Polymers. In: Rostami S (ed) Multicomponent Polymer Systems. Longman Scientific & Technical Ltd., Essex, England, p 149

    Google Scholar 

  164. Hao WT, He YY, Luo XL, Ma DZ (2001) Chin J Polym Sci 19:317

    CAS  Google Scholar 

  165. Varga J, Garzo G (1989) Angew Makromol Chem 180:15

    Google Scholar 

  166. Varga J, Schulek-Toth F, Mudra I (1994) Macromol Symp 78:229

    CAS  Google Scholar 

  167. Long Y, Stachurski ZH, Shanks RA (1991) Polym Int 26:143

    CAS  Google Scholar 

  168. Grein C, Bernreitner K, Hauer A, Gahleitner M, Neißl W (2003) J Appl Polym Sci 87:1702

    Article  CAS  Google Scholar 

  169. Grein C (2001) PhD Thesis n 2341 Swiss Federal Institute of Technology (EPFL, Lausanne, Switzerland)

    Google Scholar 

  170. Asano T, Fujiwara Y (1978) Polymer 19:99

    Article  CAS  Google Scholar 

  171. Yoshida T, Fujiwara Y, Asano T (1983) Polymer 24:925

    Article  CAS  Google Scholar 

  172. Fujiyama M (1999) Int Polym Process 14:75

    CAS  Google Scholar 

  173. Li JX, Cheung WL, Chan CM (1999) Polymer 40:2089

    CAS  Google Scholar 

  174. Li JX, Cheung WL, Chan CM (1999) Polymer 40:3641

    CAS  Google Scholar 

  175. Henning S, Adhikari R, Michler GH, Balta Calleja FJ, Karger-Kocsis J (in preparation)

    Google Scholar 

  176. Aboulfaraj M, G'Sell C, Ulrich B, Dahoun A (1995) Polymer 36:731

    Article  CAS  Google Scholar 

  177. Chu F, Yamaoka T, Ide H, Kimura Y (1994) Polymer 35:3442

    Article  CAS  Google Scholar 

  178. Chu F, Yamaoka T, Kimura Y (1995) Polymer 36:2523

    CAS  Google Scholar 

  179. Zhang X, Shi G (1994) Polymer 35:5067

    CAS  Google Scholar 

  180. Garbarczyk J, Sterzynski T, Paukzta D (1989) Polym Commun 30:153

    CAS  Google Scholar 

  181. Rybnikar FJ (1991) Macromol Sci Phys B 30:201

    Google Scholar 

  182. Varga J Gabor G, Ille A (1986) Angew Makromol Chem 186:171

    Google Scholar 

  183. Bohaty P, Vlach B, Seidler S, Koch T, Nezbedova E (2002) J Macromol Sci Phys 41:657

    Google Scholar 

  184. Lotti C, Correa CA, Canevarolo SV (2000) Mater Res 3(2):37

    CAS  Google Scholar 

  185. Ramsteiner F (1983) Kunststoffe 73:148

    CAS  Google Scholar 

  186. Karger-Kocsis J, Kuleznev VN (1982) Polymer 23:699

    Article  CAS  Google Scholar 

  187. Grein C, Béguelin P, Plummer CJG, Kausch HH, Tézé L, Germain Y (2000) Influence of the morphology on the impact fracture behaviour of iPP/EPR blends. In: Williams JG, Pavan A (eds) Fracture of Polymers, Composites and Adhesives. ESIS Pulication 27. Elsevier Science, Kidlington (Oxford, UK), p 319

    Google Scholar 

  188. Read BE (1989) Polymer 30:1439

    Article  CAS  Google Scholar 

  189. Boyd RH (1986) Polymer 26:323

    Google Scholar 

  190. Jacoby P, Bersted BH, Kissel WJ, Smith CE (1986) J Polym Sci Part B:Polym Phys 24:461

    CAS  Google Scholar 

  191. Grein C, Bernreitner K, Gahleitner M (accepted for J Appl Polym Sci)

    Google Scholar 

  192. Karger-Kocsis J, Varga J (1996) J Appl Polym Sci 62:291

    Article  CAS  Google Scholar 

  193. Karger-Kocsis J (1996) Polym Eng Sci 36:203

    Article  CAS  Google Scholar 

  194. Broda J (2003) J Appl Polym Sci 90:3957

    Article  CAS  Google Scholar 

  195. Karger-Kocsis J (2004) DE Patent 102 37 803

    Google Scholar 

  196. Lustiger A, Marzinsky CN, Devorest Y (1997) US Patent 5 627 226

    Google Scholar 

  197. Jacoby P, Heiden M (1994) EP Patent 0 589 033

    Google Scholar 

  198. Kong DC, Cleckner MD (2003) US Patent 2003207138, 2002278241

    Google Scholar 

  199. Kong DC, Cleckner MD (2003) US Patent 2003207137

    Google Scholar 

  200. Davidson PMMcK, Biddiscombe HA, Govier RK, Ott MFM (1998) EP Patent 865914

    Google Scholar 

  201. Davidson PMMcK, Biddiscombe HA, Govier RK, Ott MFM (1998) EP Patent 865912

    Google Scholar 

  202. Davidson PMMcK, Biddiscombe HA, Govier RK, Ott MFM (1998) EP Patent 865911

    Google Scholar 

  203. Davidson PMMcK, Biddiscombe HA, Govier RK, Ott MFM (1998) EP Patent 865910

    Google Scholar 

  204. Davidson PMMcK, Biddiscombe HA, Govier RK, Ott MFM (1998) EP Patent 865909

    Google Scholar 

  205. Tapp WT (1992) US Patent 5169712

    Google Scholar 

  206. Jacoby P, Bauer CW, Clingman SR, Tapp WT (1992) EP Patent 492942

    Google Scholar 

  207. Jacoby P, Bauer CW (1990) WO Application 9011321

    Google Scholar 

  208. Ruf BL (1996) J Plast Film Sheet 12:225

    CAS  Google Scholar 

  209. Fujiyama M, Kawamura Y (1988) J Appl Polym Sci 36:995

    CAS  Google Scholar 

  210. Hughes SK, Kody RS, Mrozinski JS, Brostrom ML (2002) WO Application 2002081557

    Google Scholar 

  211. Ek CG, Liedauer S, McGoldrick J, Ruemer F (2003) EP Patent 1364986

    Google Scholar 

  212. Rydin C, Ek CG (2003) WO Application 2003087205

    Google Scholar 

  213. Rydin C, McGoldrick J, Lindström T, Liedauer S (2002) EP Patent 1260547

    Google Scholar 

  214. Ek CG, Sandberg H, Liedauer S, McGoldrick J (2002) EP Patent 1260546

    Google Scholar 

  215. McGoldrick J, Ruemer F, Schiesser S, Liedauer S (2002) EP Patent 1260529

    Google Scholar 

  216. Greenshields CJ (1997) Plastic, Rubber Compos Process Appl 26:387

    CAS  Google Scholar 

Download references

Acknowledgments

The writing of this review would not have been possible without the support of Dr. Kurt Hammerschmid (Borealis). His scientific assistance and day-to-day presence have been precious allies. Special thanks also to my colleagues DI. Klaus Bernreitner, Dr. Markus Gahleitner, Ing. Johannes Wolfschwenger, Dr. Wolfgang Neißl (all Borealis) for the stimulating discussions we have had concerning the β-topic. I would also like to point out the decisive role of my PhD stay at the Swiss Federal Institute of Technology (EPFL, Lausanne) as the starting point of my interest in β-nucleated systems. I therefore specially acknowledge Prof. Hans-Henning Kausch, Dr. Philippe Béguelin, Dr. Christopher J.G. Plummer and Dr. Rudolf Gensler.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christelle Grein .

Editor information

Hans-Henning Kausch

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Grein, C. Toughness of Neat, Rubber Modified and Filled β-nucleated Polypropylene: from Fundamentals to Applications. In: Kausch, HH. (eds) Intrinsic Molecular Mobility and Toughness of Polymers II. Advances in Polymer Science, vol 188. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b136972

Download citation

Publish with us

Policies and ethics