Advertisement

Organic Esters of Cellulose: New Perspectives for Old Polymers

  • Omar A. El SeoudEmail author
  • Thomas Heinze
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 186)

Abstract

The impetus for the increased interest in the synthesis of functionalized natural polymers, in particular esters of cellulose, is their easy biodegradability and conformity to the principles of green chemistry. This review is concerned with the preparation of cellulose esters under homogeneous reaction conditions, including products that cannot be obtained by the (industrial) heterogeneous reaction. This scheme, which leads to products of reproducible properties, includes three stages: Cellulose activation (by solvent exchange or heat), dissolution (in derivatizing or non-derivatizing solvent systems), and functionalization of the solubilized polymer. Dissolution in non-derivatizing solvent systems, in particular LiCl/DMAc; (C4H9)4NF ·hydrate/DMSO and ionic liquids (green solvents) is due to the disruption of the H-bonding within the polymer structure. Dissolution in derivatizing solvents, e.g., acid-anhydrides leads to functionalization of cellulose, and may be fruitfully employed in controlling the regioselectivity of polymer substitution. Optimization of each of the above-mentioned reaction stages is a pre-requisite in order to meet the requirements of green chemistry.

Cellulose, esters of Cellulose, derivatization of Cellulose esters, properties of Cellulose, homogeneous reaction Green chemistry, principles of Green chemistry, application to cellulose 

Abbreviations

AGU

anhydroglucose unit of cellulose

CA

cellulose acetate

CDI

N,N-carbonyldiimidazole

Cell

cellulose

Cell-Tos

cellulose tosylate

CMC

carboxymethyl cellulose

DCC

dicyclohexylcarbodiimide

DMAc

N,N-dimethylacetamide

DMF

N,N-dimethylformamide

DMSO

dimethyl sulfoxide

DS

average degree of substitution in the AGU

DSC

differential scanning calorimetry

Et3N

triethylamine

EWNN

alkaline solution of iron sodium tartarate

HEC

hydroxyethylcellulose

HRC

homogenous reaction conditions

Ic

index of crystallinity of cellulose

IL

ionic liquid

LS

light scattering

Py

pyridine

SEC

size exclusion chromatography

TBAF

tetra-n-butyl ammonium fluoride·3H2O

TFA

trifluoroacetic acid

Tos-Cl

tosyl chloride

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    www.investor.bayer.de, visited August 15, 2004 Google Scholar
  2. 2.
    Amass W, Amass A, Tighe B (1998) Polym Intern 47:89 Google Scholar
  3. 3.
    Anastas PT, Warner JC (1998) Green Chemistry: Theory and Practice. Oxford University Press, New York, p 30 Google Scholar
  4. 4.
    Tundo P, Anastas P, Black DS, Breen J, Collins T, Memoli S, Miyamoto J, Polyakoff M, Tumas W (2000) Pure Appl Chem 72:1207 Google Scholar
  5. 5.
    Anastas PT, Zimmerman JB (2003) Environ Sci Technol 95 A Google Scholar
  6. 6.
    Lörcks J (1998) Polym Degrad Stab 59:245 Google Scholar
  7. 7.
    Yoshioka M, Shiraishi N (2000) Mol Cryst Liq Cryst Sci Technol A 353:59 Google Scholar
  8. 8.
    Braunegg G, Lefebvre G, Genser K (1998) J Biotechnol 65:127 CrossRefGoogle Scholar
  9. 9.
    Riedel U, Nickel J (1999) Angew Makromol Chem 272:34 CrossRefGoogle Scholar
  10. 10.
    Kaplan DL (ed) (1998) Biopolymers from Renewable Resources: Macromolecular Systems-Materials Approach. Springer, Berlin Heidelberg New York Google Scholar
  11. 11.
    Chiellini E, Gil H, Braunegg G, Buchert J, Gatenholm P, van de Zee M (2001) Biorelated Polymers: Sustainable Polymer Science and Tecnology. Kluwer, New York Google Scholar
  12. 12.
    Chiellini E, Solaro R (eds) (2003) Recent Advances in Biodegradable Polymers and Plastics. Wiley-VCH, Weinheim Google Scholar
  13. 13.
    Carollo P (2004) In: Rustemeyer P (ed) Cellulose Acetates: Properties and Applications. Wiley-VCH, Weinheim, p 335 Google Scholar
  14. 14.
    Rustemeyer P (2004) In: Rustemeyer P (ed) Cellulose Acetates: Properties and Applications. Wiley-VCH, Weinheim, p 267 Google Scholar
  15. 15.
    Buchanan CM, Edgar KJ, Wilson AK (1991) Macromolcules 24:3060 Google Scholar
  16. 16.
    Puls J, Altaner C, Saake B (2004) In: Rustemeyer P (ed) Cellulose Acetates: Properties and Applications. Wiley-VCH, Weinheim, p 239 Google Scholar
  17. 17.
    Samios E, Dart RK, Dawkins JV (1997) Polym 12:3045 Google Scholar
  18. 18.
    O'Sullivan AC (1997) Cellulose 4:173 Google Scholar
  19. 19.
    Klemm D, Phillip B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive Cellulose Chemistry, Vol 1. Wiley-VCH, Weinheim p 9 Google Scholar
  20. 20.
    Klemm D, Phillip B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive Cellulose Chemistry, Vol 1. Wiley-VCH, Weinheim p 147 Google Scholar
  21. 21.
    Klemm D, Phillip B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive Cellulose Chemistry, Vol 1. Wiley-VCH, Weinheim p 43 Google Scholar
  22. 22.
    Klemm D, Phillip B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive Cellulose Chemistry, Vol 1. Wiley-VCH, Weinheim p 25 Google Scholar
  23. 23.
    Heinze T, Liebert T (2001) Prog Polym Sci 26:1689 CrossRefGoogle Scholar
  24. 24.
    Gardner KH, Blackwell J (1974) Biopolymers 13:1975 CrossRefGoogle Scholar
  25. 25.
    Kroon-Batenburg LMJ, Kroon J, Nordholt MG (1986) Polym Commun 27:290 Google Scholar
  26. 26.
    Kondo T, Sawatari C (1996) Polym 37:393 CrossRefGoogle Scholar
  27. 27.
    Hinterstoisser B, Salmén L (2000) Vibrational Spectroscop 22:111 Google Scholar
  28. 28.
    Jeffries R, Jones DM, Roberts JG, Selby K, Simmons SC, Warwicker JO (1969) Cellul Chem Technol 3:255 Google Scholar
  29. 29.
    Glasser WG, Samaranayake G, Dumay M, Davé V (1995) J Polym Sci B 33:2045 Google Scholar
  30. 30.
    Samios E, Dart RK, Dawkins JV (1997) Polym 12:3045 Google Scholar
  31. 31.
    Krässig H (1986) Ullman's Encyclopedia of Industrial Chemistry, Campbell FT, Pfefferkorn R, Rousaville JF (eds) 5th ed. VCH, Weinheim p 375 Google Scholar
  32. 32.
    Toyoshima I (1993) Cellulosics: Chemical, Biochemical and Material Aspects, Kennedy JF, Phillips GO, Williams PA (eds). Ellis Horwood, Chichester, p 125 Google Scholar
  33. 33.
    Hermans PH, Heicken D, Weidinger A (1959) J Polym Sci 35:145 CrossRefGoogle Scholar
  34. 34.
    Tang L-G, Hon DN-S, Zhu Y-Q (1997) J Appl Polym Sci 64:1953 CrossRefGoogle Scholar
  35. 35.
    Rowland SP (1977) In: Arthur JC Jr (ed) Textile and Paper Chemistry and Technology, ACS Smp ser No. 49. Am Chem Soc, Washington, DC p 20 Google Scholar
  36. 36.
    Krässig HA (ed) (1993) In: Cellulose: Structure, Accessibility, and Reactivity. Gordon and Breach, Yverdon Google Scholar
  37. 37.
    Callais PA (1986) Derivatization and Characterization of Cellulose in Lithium Chloride and N,N-Dimethylacetamide Solutions. Ph.D. Thesis, University of Southern Mississippi, USA Google Scholar
  38. 38.
    Marson GA (1999) Acylation of Cellulose in Homogeneous Medium. MSc Thesis, University of São Paulo, Brazil Google Scholar
  39. 39.
    Sefain MZ, Nada AMA, El-kalyoubi SF (1980) Cellul Chem Technol 14:139 Google Scholar
  40. 40.
    Sefain MZ, Nada AMA (1985) Ibid 19:257 Google Scholar
  41. 41.
    Youssef MAM, Nada AMA, Ibrahim AA (1989) Ibid 23:505 Google Scholar
  42. 42.
    Shimizu Y, Kimura K, Masuda S, Hayashi J (1993) In: Kennedy JF, Phillips GO, Williams PA (eds) Cellulosics: Chemical, Biochemical and Material Aspects. Ellis Horwood, Chichester, p 67 Google Scholar
  43. 43.
    Kamide K, Okajima K, Matsui T, Kowasaka K (1984) Polym J 16:857 Google Scholar
  44. 44.
    Isogai A, Ishizu A, Nakano J, Atalla RH (1985) In: Atalla RH (ed) The Structure of Cellulose 1: Characterization of the Solid State, ACS Symposium Ser No 340. Am Chem Soc, Washington, DC, p 292 Google Scholar
  45. 45.
    McCormick CL, Callais PA, Huchinson BH (1985) Macromolecules 18:2394 CrossRefGoogle Scholar
  46. 46.
    McCormick CL, Callais PA (1986) Polym Prepr 27:91 Google Scholar
  47. 47.
    McCormick CL, Callais PA (1987) Polym 28:2317 CrossRefGoogle Scholar
  48. 48.
    Kurata S, Suzuki I, Ikeda I (1992) Polym Internat 29:1 Google Scholar
  49. 49.
    Dupont A-L (2003) Polym 44:4117 CrossRefGoogle Scholar
  50. 50.
    Ekmanis JL (1987) Am Lab News Jan-Feb:10 Google Scholar
  51. 51.
    Edgar KJ, Arnold KM, Blount WW, Lawniczak JE, Lowman DW (1995) Macromolecules 28:4122 CrossRefGoogle Scholar
  52. 52.
    Regiani AM, Frollini E, Marson GA, Arantes GM, El Seoud OA (1999) J Polym Sci A 37:1357 CrossRefGoogle Scholar
  53. 53.
    Hatakeyama T, Nakamura K, Hatakeyama H (2000) Thermochim Acta 352–353:233 Google Scholar
  54. 54.
    Dawsey TR, McCormick CL (1990) JMS-Rev Macromol Chem Phys C30:405 Google Scholar
  55. 55.
    Potthast A, Rosenau ST, Sixta JH, Kosma P (2003) Polym 44:7 CrossRefGoogle Scholar
  56. 56.
    Marson GA, El Seoud OA (1999) J Appl Polym Sci 74:1355 CrossRefGoogle Scholar
  57. 57.
    El Seoud OA, Marson GA, Ciacco, GT, Frollini E (2000) Macromol Chem Phys 201:882 Google Scholar
  58. 58.
    Zhou J, Zhang L (2000) Polym J 32:866 Google Scholar
  59. 59.
    Petropavlovskii GA, Zimina TR (1994) Russ J Appl Chem 67:629 Google Scholar
  60. 60.
    Heinze T, Liebert T, Klüfers P, Meister F (1999) Cellulose 6:153 Google Scholar
  61. 61.
    Liebert T, Heinze T (1998) Macromol Symp 130:271 Google Scholar
  62. 62.
    Saalwächter K, Burchard W, Klüfers P, Kettenbach G, Mayer P, Klemm D, Dugarmaa S (2000) Macromolecules 33:4094 Google Scholar
  63. 63.
    Feddersen RL, Thorp SN (1993) In: Whistler RL, BeMiller JN (eds) Polysaccharides and their Derivatives, 3rd ed. Academic Press, New York, p 537 Google Scholar
  64. 64.
    Heinze T, Pfeiffer K (1999) Angew Makromol Chem 266:37 CrossRefGoogle Scholar
  65. 65.
    Fischer S, Voigt W, Fischer K (1999) Cellulose 6:213 Google Scholar
  66. 66.
    Fischer S, Leipner H, Brendler E, Voigt W, Fischer K (2000) In: El-Nokaly MA, Soini HA (eds) Polysaccharide Applications, Cosmetics and Pharmaceuticals. ACS Symposium Series, Washington, DC p 143 Google Scholar
  67. 67.
    Leipner H, Fischer S, Brendler E, Voigt W (2000) Macromol Chem Phys 201:2041 CrossRefGoogle Scholar
  68. 68.
    Striegel AM, Timpa JD, Piotrowiak P, Cole RB (1997) Int J Mass Spectrom Ion Proc 162:45 CrossRefGoogle Scholar
  69. 69.
    Woodings CR (1995) Int J Macromol 17:305 Google Scholar
  70. 70.
    O'Driscoll C (1996) Chemistry in Britain 32:27 Google Scholar
  71. 71.
    Holbrey JD, Reichert WM, Nieuwenhuyzen M, Johnson S, Seddon KR, Rogers RD (2003) Chem Commun 1636 Google Scholar
  72. 72.
    Swatloski RP, Spear SK, Holbrey JD, Rogers RB (2002) J Am Chem Soc 124:4974 CrossRefGoogle Scholar
  73. 73.
    Wu J, Zhang J, Zhang H, He J, Ren Q, Guo M (2004) Biomacromolecules 5:266 Google Scholar
  74. 74.
    Turner MB, Spear SK, Holbrey JD, Rogers RD (2004) Macromolecules 5:1379 Google Scholar
  75. 75.
    Ngo HL, LeCompte K, Hargens L, McEwen AB (2000) Thermochim Acta 357-358:97 CrossRefGoogle Scholar
  76. 76.
    Ren Q, Wu J, Zhang J, Zhang J, He JS (2003) Acta Polym Sin 3:448 Google Scholar
  77. 77.
    Wasserscheid P, Welton T (eds) (2002) Ionic liquids in synthesis. Wiley-VCH, Weinheim Google Scholar
  78. 78.
    Dawsey TR (1994) In: Gilbert RD (ed) Cellulosic Polymers, Blends and Composites. Carl Hanser Verlag, New York, p 157 Google Scholar
  79. 79.
    Striegel AM, Timpa JD (1995) Carbohydr Res 267:271 CrossRefGoogle Scholar
  80. 80.
    Silva AA, Laver ML (1997) Tappi J 80:173 Google Scholar
  81. 81.
    Kvernheim AL, Lystad E (1989) Acta Chem Scand 43:209 Google Scholar
  82. 82.
    Hasegawa M, Isogai A, Onabe F (1993) J Chromatogr 635:334 CrossRefGoogle Scholar
  83. 83.
    Striegel AM, Timpa JD (1996) In: Potschka M, Dubin PL (eds) Strategies in Size Exclusion Chromatography. ACS Symposium Series, Washington, DC, 635, p 366 Google Scholar
  84. 84.
    Sjöholm E, Gustafsson K, Eriksson B, Brown W, Colmsjö A (2000) Carbohydr Polym 41:153 Google Scholar
  85. 85.
    Striegel A (1997) Carbohydr Polym 34:267 CrossRefGoogle Scholar
  86. 86.
    El Seoud OA, Regiani AM, Frollini E (2000) In: Frollini E, Leao AL, Mattoso LHC (eds) Natural Polymers and Agrofibers Composites. São Carlos, Brazil, p 73 Google Scholar
  87. 87.
    Pionteck H, Berger W, Morgenstern B, Fengel D (1996) Cellulose 3:127 Google Scholar
  88. 88.
    El-Kafrawi A (1982) J Appl Polym Sci 27:2435 Google Scholar
  89. 89.
    Turbak AS (1994) Tappi J 64:94 Google Scholar
  90. 90.
    Vincendon M (1985) Macromol Chem 186:1787 CrossRefGoogle Scholar
  91. 91.
    Petrus L, Gray DG, BeMiller JN (1995) Carbohydr Res 268:319 CrossRefGoogle Scholar
  92. 92.
    Fersht AR (1971) J Am Chem Soc 93:3504 Google Scholar
  93. 93.
    Kresge JA, Fitzgerald PH, Chiang Y (1974) J Am Chem Soc 96:4698 CrossRefGoogle Scholar
  94. 94.
    Cary FA, Sundberg RJ (1990) Advanced Organic Chemistry, 3rd ed., Part A. Plenum Press, New York, p 257 Google Scholar
  95. 95.
    Morgenstern B, Kammer H (1996) Trip J 4:87 Google Scholar
  96. 96.
    Spange S, Reuter A, Vilsmeier E, Heinze T, Keutel D, Linert W (1998) J Polym Sci A 36:1945 CrossRefGoogle Scholar
  97. 97.
    Kamlet MJ, Abboud J-LM, Taft RW (1981) Prog Phys Org Chem 13:485 Google Scholar
  98. 98.
    Reichardt C (2003) Solvents and Solvent Effects in Organic Chemistry, 3rd edn. VCH, Weinheim, p 389 Google Scholar
  99. 99.
    Spange S, Fischer K, Prause S, Heinze T (2003) Cellulose 10:201 Google Scholar
  100. 100.
    Berger W, Philipp B (1988) Cellul Chem Technol 22:387 Google Scholar
  101. 101.
    Morgenstern B, Berger W (1993) Acta Polym 44:100 CrossRefGoogle Scholar
  102. 102.
    Furuhata K, Koganei K, Chang H-S, Aoki N, Sakamoto M (1992) Carbohydr Res 230:165 Google Scholar
  103. 103.
    Satgé C, Verneuil B, Branland P, Granet R, Krausz P, Rozier J, Petit C (2002) Carbohydr Polym 49:373 Google Scholar
  104. 104.
    Satgé C, Granet R, Verneuil B, Branland P, Krausz P (2004) Comptes Rend Chimie 7:135 Google Scholar
  105. 105.
    Varma RS, Namboordiri VV (2001) Chem Commun 643 Google Scholar
  106. 106.
    Marson G, El Seoud OA (1999) J Polym Sci A 37:3738 CrossRefGoogle Scholar
  107. 107.
    Buchard W (1993) Trip J 1:192 Google Scholar
  108. 108.
    Schulz L, Burchard W, Dönges R (1998) In: Heinze T, Glasser WG (eds) Cellulose Derivatives: Modification, Characterization, and Nanostructures. ACS, Symposium Series 688, Washington, DC, p 218 Google Scholar
  109. 109.
    Morgenstern B, Kammer H-W (1999) Polym 40:1299 CrossRefGoogle Scholar
  110. 110.
    Menger FM (1993) Acc Chem Res 26:206 CrossRefGoogle Scholar
  111. 111.
    Röder T, Morgenstern B, Glatter O (2000) Lenzinger Berichte 79:97 Google Scholar
  112. 112.
    Sjöholm E, Gustafsson K, Pettersson B, Colmsjö A (1997) Carbohydr Polym 32:57 Google Scholar
  113. 113.
    Röder T, Morgenstern B (1999) Polym 40:4143 Google Scholar
  114. 114.
    Ruiz N (2004) Acylation of Cellulose Under Homogeneous Reaction Conditions. MSc Thesis, University of São Paulo, Brazil Google Scholar
  115. 115.
    Westermark U, Gustafsson K (1994) Holzforschung 48:146 Google Scholar
  116. 116.
    Yanagisawa M, Shibata I, Isogai A (2004) Cellulose 11:169 Google Scholar
  117. 117.
    Strlic M, Kolenc J, Kolar J, Pihlar B (2002) J Chromatogr A 964:47 CrossRefGoogle Scholar
  118. 118.
    Röder T, Morgenstern B, Glatter O (2000) Macromol Symp 162:87 Google Scholar
  119. 119.
    Potthast A, Rosenau T, Buchner R, Röder T, Ebner G, Bruglachner H, Sixta H, Kosma P (2002) Cellulose 9:41 Google Scholar
  120. 120.
    Röder T, Morgenstern B, Schelosky N, Glatter O (2001) Polym 42:6765 Google Scholar
  121. 121.
    Zimm BH (1948) J Chem Phys 16:1093 Google Scholar
  122. 122.
    Kamide K, Miyazaki Y, Abe T (1979) Polym J 11:523 Google Scholar
  123. 123.
    Brandrup J, Immergut EH (eds) (1989) Polymer Handbook, 3rd ed. Wiley, New York Google Scholar
  124. 124.
    Evans R, Wearne RH, Wallis AFA (1989) J Appl Polym Sci 37:3291 Google Scholar
  125. 125.
    Nilsson S, Sundelöf L-O, Porsch B (1995) Carbohydr Res 28:265 Google Scholar
  126. 126.
    Terbojevich M, Cosani A, Camilot M, Focher B (1995) J Appl Polym Sci 55:1663 CrossRefGoogle Scholar
  127. 127.
    Basedow M, Ebert KH, Feigenbutz W (1980) Makromol Chem 181:1071 CrossRefGoogle Scholar
  128. 128.
    Myasoedova VV, Pokrovskii SA, Zav'yalov NA, Krestov GA (1991) Russ Chem Rev 60:954 CrossRefGoogle Scholar
  129. 129.
    Paul RC, Banait JS, Narula SP (1975) J Electroanal Chem 66:111 Google Scholar
  130. 130.
    Taniewska-Osinska S, Wozincka J (1981) Thermochim Acta, 47:57 Google Scholar
  131. 131.
    Mason TJ, Lorimer JP (1983) Computers Chem 7:159 CrossRefGoogle Scholar
  132. 132.
    Maskill H (1990) Educ Chem 27:111 Google Scholar
  133. 133.
    Ramos LA, Ciacco GT, Assaf JM, El Seoud OA, Frollini E (2002) Fourth International Symposium on Natural Polymers and Composites–-ISNaPol, p 42 Google Scholar
  134. 134.
    Hefter G, Marcus Y, Waghorne WE (2002) Chem Rev 102:2773 CrossRefGoogle Scholar
  135. 135.
    Mark JE, Eisenberg A, Graessley WW, Mandelkern L, Samulski ET, König JL, Wignall GD (1992) Physical Properties of Polymers, 2nd ed. ACS, Washington, DC, p 150 Google Scholar
  136. 136.
    Klemm D, Heinze T, Philipp B, Wagenknecht W (1997) Acta Polymerica 48:277 CrossRefGoogle Scholar
  137. 137.
    Golova LK, Kulichikhin VS, Papkov SP (1986) Vysokomol Soedin A28:1795 Google Scholar
  138. 138.
    Wagenknecht W, Philipp B, Schleicher H, Beierlein I (1977) Faserforsch Textiltech 28:421 Google Scholar
  139. 139.
    Johnson DC, Nicholson MD, Haigh FG (1976) J Appl Polym Sci Appl Polym Symp 28:931 Google Scholar
  140. 140.
    Fujimoto T, Takahashi S, Tsuji M, Miyamoto M, Inagaki H (1986) J Polym Sci Polym Lett 24:495 Google Scholar
  141. 141.
    Schnabelrauch M, Vogt S, Klemm D, Nehls I, Philipp B (1992) Angew Makromol Chem 198:155 Google Scholar
  142. 142.
    Philipp B, Wagenknecht W, Nehls I, Ludwig J, Schnabelrauch M, Kim HR, Klemm D (1990) Cellul Technol Chem 24:667 Google Scholar
  143. 143.
    Liebert T, Klemm D, Heinze T (1996) JMS-Pure Appl Chem A 33:613 Google Scholar
  144. 144.
    Hiemenz, PC, Rajagopalan (1997) Principles of Colloid and Surface Chemistry, 3rd ed. Marcel Dekker, New York, pp 297–355 Google Scholar
  145. 145.
    Jutz C (1976) Adv Org Chem 9:225 Google Scholar
  146. 146.
    Vigo TL, Daighly BJ, Welch CM (1972) J Polym Sci B Polym Phys 10:397 Google Scholar
  147. 147.
    McCormick CL, Dawsey TR, Newman JK (1990) Carbohydr Res 208:183 CrossRefGoogle Scholar
  148. 148.
    CRC Handbook of Chemistry and Physics (1993) 73rd ed. CRC Press, Boca Raton, FL, Sects 8–36 Google Scholar
  149. 149.
    Leo AJ, Hansch C (1999) Perspect Drug Discov 17:1 Google Scholar
  150. 150.
    Demhlow EV, Demhlow SS (1983) Phase Transfer Catalysis. Verlag-Chemie, Weinheim, p 12 Google Scholar
  151. 151.
    Salin BN, Cemeris M, Mironov DP, Zatsepin AG (1991) Khim Drev 3:65 Google Scholar
  152. 152.
    Salin BN, Cemeris M, Malikova OL (1993) Khim Drev 5:3 Google Scholar
  153. 153.
    Hawkinson DE, Kohout E, Fornes RE, Gilbert RD (1991) J Polym Sci B Polym Phys 29:1599 CrossRefGoogle Scholar
  154. 154.
    Liebert T, Schnabelrauch M, Klemm D, Erler U (1994) Cellulose 1:249 Google Scholar
  155. 155.
    Liebert T, Klemm D (1998) Acta Polymerica 49:124 CrossRefGoogle Scholar
  156. 156.
    Conio G, Corazza P, Bianchi E, Tealdi A, Ciferri A (1981) Mol Cryst Liq Cryst 69:273 Google Scholar
  157. 157.
    Guo J-X, Gray DG (1994) In: Gilbert RD (ed) Cellulosic Polymers, Blends and Composites. Hanser Publ, New York, p 25 Google Scholar
  158. 158.
    McCormick CL, Dawsey TR (1990) Macromolecules 23:3606 Google Scholar
  159. 159.
    McCormick CL, Lichatowich DK (1979) J Polym Sci Polym Lett Ed 17:479 Google Scholar
  160. 160.
    McCormick CL, Chen TS (1982) In: Symor RB, Stahl GA (eds) Macromolecular Solutions, Solvent-Property Relationships in Polymers. Pergamon Press, New York, p 101 Google Scholar
  161. 161.
    Ibrahim AA, Nada AMA, Hagemann U, El Seoud OA (1996) Holzforschung 50:221 Google Scholar
  162. 162.
    Diamantoglou M, Kundinger EF (1995) In: Kennedy JF, Phillips GO, Williams PA, Picullel L (eds) Cellulose and Cellulose Derivatives, Physicochemical Aspects and Industrial Applications. Woodhead Publishing, Cambridge, p 141 Google Scholar
  163. 163.
    Terbojevich M, Cosani A, Focher B, Gastaldi G, Wu W, Marsano E, Conio G (1999) Cellulose 6:71 Google Scholar
  164. 164.
    Pawlowski WP, Sanakar SS, Gilbert RD (1987) J Polym Sci A Polym Chem 25:3355 CrossRefGoogle Scholar
  165. 165.
    Pawlowski WP, Gilbert RD, Fornes R, Purrington S (1988) J Polym Sci B Polym Phys 26:1101 CrossRefGoogle Scholar
  166. 166.
    Samaranayake G, Glasser WG (1993) Carbohydr Res 22:79 Google Scholar
  167. 167.
    Heinze T, Liebert T, Pfeiffer K, Hussain MA (2003) Cellulose 10:283 Google Scholar
  168. 168.
    Marsano E, De Paz L, Tambuscio E, Bianchi E (1998) Polym 39:4289 CrossRefGoogle Scholar
  169. 169.
    Sun RC, Fang JM, Tomkinson J, Hill CAS (1999) J Wood Chem Technol 19:287 Google Scholar
  170. 170.
    Witzemann JS, Nottingham WD, Rector FD (1990) J Coating Technol 62:101 Google Scholar
  171. 171.
    Witzemann JS, Nottingham WD (1991) J Org Chem 56:1713 Google Scholar
  172. 172.
    Clemens RC (1986) Chem Rev 86:241 CrossRefGoogle Scholar
  173. 173.
    Wentrup C, Heilmayer W, Kollenz G (1994) Synthesis 1219 Google Scholar
  174. 174.
    Larsson L, Hansen B (1956) Svensk Kem Tidskr 68:521, CA, 51, 7062e Google Scholar
  175. 175.
    Robertson RE, Rossall B, Redmond WA (1971) Can J Chem 49:3665 Google Scholar
  176. 176.
    Allen AD, Kresge AJ, Schepp NP, Tidwell TT (1987) Ibid 65:1719 Google Scholar
  177. 177.
    Abraham MH (1990) Chem Soc Rev 73 Google Scholar
  178. 178.
    Takaragi A, Minoda M, Miyamoto T, Liu HQ, Zhang LN (1999) Cellulose 6:93 Google Scholar
  179. 179.
    Heinze T, Dicke R, Koschella A, Kull AH, Klohr E-A, Koch W (2000) Macromol Chem Phys 201:627 CrossRefGoogle Scholar
  180. 180.
    Ciacco GT, Liebert TF, Frollini E, Heinze T (2003) Cellulose 10:125 Google Scholar
  181. 181.
    Tada EB, El Seoud OA (2002) J Phys Org Chem 15:403 Google Scholar
  182. 182.
    Hefter GT (1991) Pure Appl Chem 63:1749 Google Scholar
  183. 183.
    March J (1992) Advanced Organic Chemistry, 4th edn. Wiley, New York, p 659 Google Scholar
  184. 184.
    March J (1992) Advanced Organic Chemistry, 4th edn. Wiley, New York, p 393 Google Scholar
  185. 185.
    Samaranayake G, Glasser WG (1993) Carbohydr Res 22:1 Google Scholar
  186. 186.
    Gerardeau S, Aburto J, Vaca-Garcia C, Alric I, Borredon E, Gaset A (2001) In: Biorelated Polymers: Sustainable Polymer Science and Tecnology. Kluwer, New York, p 53 Google Scholar
  187. 187.
    Oera J (2003) Esterification. Wiley-VCH, Weinheim, p 21 Google Scholar
  188. 188.
    Glasser WG, McCartney BK, Samaranayake G (1994) Biotechnol Prog 10:214 CrossRefGoogle Scholar
  189. 189.
    Greene TW, Wuts PGM (1991) Protective groups in organic synthesis. Wiley, New York, p 71 Google Scholar
  190. 190.
    Gerzon K, Kau D (1967) J Med Chem 10:189 CrossRefGoogle Scholar
  191. 191.
    Orzeszko A, Gralewska R, Starosciak BJ, Kazimierczuk Z (2000) Acta Biochim Pol 47:87 Google Scholar
  192. 192.
    Vaca-Garcia C, Thiebaud S, Borredon MW, Gozzelino G (1998) JAOCS 75:315 Google Scholar
  193. 193.
    Shimizu Y, Hayashi J (1988) Sen-i Gakkaishi 44:451 Google Scholar
  194. 194.
    Siegmund G, Klemm D (2002) Polym News 27:84 Google Scholar
  195. 195.
    Sealey JE, Samaranayake G, Todd JG, Glasser WG (1996) J Polym Sci B Polym Phys 34:1613 CrossRefGoogle Scholar
  196. 196.
    Sealey JE, Frazier CE, Samaranayake G, Glasser WG (2000) J Polym Sci B Polym Phys 38:486 CrossRefGoogle Scholar
  197. 197.
    Glasser WG, Becker U, Todd JG (2000) Carbohydr Polym 42:393 CrossRefGoogle Scholar
  198. 198.
    Koschella A, Haucke G, Heinze T (1997) Polym Bull 39:597 CrossRefGoogle Scholar
  199. 199.
    Heinze T, Schaller J (2000) Macromol Chem Phys 201:1214 CrossRefGoogle Scholar
  200. 200.
    Hussain MA, Liebert T, Heinze T (2004) Polym News 29:14 Google Scholar
  201. 201.
    Tascioglu S (1996) Tetrahedron 34:11113 Google Scholar
  202. 202.
    Bunton CA (1997) J Mol Liq 72:231 CrossRefGoogle Scholar
  203. 203.
    Thuresson K, Lindman B (1997) J Phys Chem B 101:6460 Google Scholar
  204. 204.
    Kastner U, Hoffmann H, Donges R, Ehrler R (1994) Colloids Surf A 82:279 Google Scholar
  205. 205.
    Kastner U, Hoffmann H, Donges R, Ehrler R (1996) Ibid 112:209 Google Scholar
  206. 206.
    Iwata T, Azuma J, Okamura K, Muramoto M, Chun B (1992) Carbohydr Res 244:277 Google Scholar
  207. 207.
    Iwata T, Okamura K, Azuma J, Tanaka F (1996) Cellulose 3:107 Google Scholar
  208. 208.
    Iwata T, Fukushima A, Okamura K, Azuma J (1997) J Appl Polym Sci 65:1511 CrossRefGoogle Scholar
  209. 209.
    Iwata T, Doi Y, Azuma J (1997) Macromolecules 30:6683 Google Scholar
  210. 210.
    Kamide K, Saito M (1994) Macromol Symp 83:233 Google Scholar
  211. 211.
    Koschella A (2000) Use of regioselective synthesis for obtaining new functionalized polymers, and use of NMR spectroscopy for the characterization of unconventional substitution patterns. PhD Thesis, University of Jena, Germany Google Scholar
  212. 212.
    Stein A, Klemm D (1995) Papier (Darmstadt) 49:723 Google Scholar
  213. 213.
    Koschella A, Klemm D (1997) Macromol Symp 120:115 Google Scholar
  214. 214.
    Koschella A, Heinze T, Klemm D (2001) Macromol Biosci 1:49 Google Scholar
  215. 215.
    Arai K, Ogiwara Y (1980) Sen-i Gakkaishi 36:T82–T84 Google Scholar
  216. 216.
    Morooka T, Norimoto M, Yamada T, Shiraishi N (1982) J Appl Polym Sci 127:4409 Google Scholar
  217. 217.
    Miyagi Y, Shiraishi N, Yokota T, Yamashita S, Hayashi Y (1983) J Wood Chem Technol 3:59 Google Scholar
  218. 218.
    Seymour RB, Johnson EL (1978) J Polym Sci Polym Chem Ed 16:1 Google Scholar
  219. 219.
    Leoni R, Baldini A (1982) Carbohydr Polym 2:298 CrossRefGoogle Scholar
  220. 220.
    Saikia CN, Dutta NN, Borah M (1993) Thermochim Acta 219:191 CrossRefGoogle Scholar
  221. 221.
    Wagenknecht W, Nehls I, Philipp B (1992) Carbohydr Res 237:211 Google Scholar
  222. 222.
    Mansson P, Westfeld L (1980) Cellul Chem Technol 14:13 Google Scholar
  223. 223.
    Shimizu Y, Nakayama A, Hayashi J (1993) Sen-i Gakkaishi 49:352 Google Scholar
  224. 224.
    Emel'yanov YG, Grinshpan DD, Kaputskii FN (1988) Khim Drev 1:23 Google Scholar
  225. 225.
    Schempp W, Krause T, Seifried U, Koura A (1984) Papier (Darmstadt) 38:607 Google Scholar
  226. 226.
    Klemm D, Schnabelrauch M, Stein A, Philipp B, Wagenknecht W, Nehls I (1990) Papier (Darmstadt) 44:624 Google Scholar
  227. 227.
    Mormann W, Demeter J (1999) Macromolecules 32:1706 Google Scholar
  228. 228.
    Klemm D, Heinze T, Stein A, Liebert T (1995) Macromol Symp 99:129 Google Scholar
  229. 229.
    Liebert T (1995) Cellulose esters as hydrolytically instable intermediates and pH-sensitive carriers. Ph.D. Thesis, University of Jena, Germany Google Scholar
  230. 230.
    Liebert T, Heinze T (1998) ACS Symposium Series 688. American Chemical Society, Washington, DC, p 61 Google Scholar
  231. 231.
    Stein A, Klemm D (1988) Macromol Rapid Commun 9:569 Google Scholar
  232. 232.
    Heinze T, Liebert T (2004) In: Rustemeyer P (ed) Cellulose Acetates: Properties and Applications. Wiley-VCH, Weinheim, p 167 Google Scholar
  233. 233.
    Krasovskii AN, Polyakov DN, Mnatsakanov SS (1993) Russ J Appl Chem 66:918 Google Scholar
  234. 234.
    Krasovskii AN, Polyakov DN (1996) Ibid 69:1049 Google Scholar
  235. 235.
    Hikichi K, Kakuta Y, Katoh T (1995) Polym J 7:659 Google Scholar
  236. 236.
    Buchanan CM, Hyatt JA, Lowman DW (1989) J Am Chem Soc 111:7312 Google Scholar
  237. 237.
    Deus C, Friebolin H, Siefert E (1991) Makromol Chem 192:75 CrossRefGoogle Scholar
  238. 238.
    Braun S, Kalinowski HO, Berger S (1996) 100 and More Basic NMR Experiments. VCH, Weinheim, p 99 Google Scholar
  239. 239.
    Kowasaka K, Okajima K, Kamide K (1988) Polym J 20:827 Google Scholar
  240. 240.
    Iijima H, Kowasaka K, Kamide K (1992) Polym J 24:1077 CrossRefGoogle Scholar
  241. 241.
    Bjorndal H, Lindberg B, Rosell KG (1971) J Polym Sci Polym Symp 36:523 Google Scholar
  242. 242.
    Lee CK, Gray GR (1995) Carbohydr Res 269:167 CrossRefGoogle Scholar
  243. 243.
    Tosh B, Saikia CN (2000) Trends in Carbohydrate Chemistry 6:143 Google Scholar
  244. 244.
    Tosh B, Saikia CN, Dass NN (2000) Carbohydr Res 327:345 CrossRefGoogle Scholar
  245. 245.
    Galaev IYu (1995) Russian Chem Rev 64:471 Google Scholar

Authors and Affiliations

  1. 1.Instituto de QuímicaUniversidade de São PauloSão Paulo, S.P.Brazil
  2. 2.Friedrich Schiller University of JenaJenaGermany

Personalised recommendations