Advertisement

Metabolic flux analysis: A key methodology for systems biology of metabolism

  • Uwe SauerEmail author
Chapter
Part of the Topics in Current Genetics book series (TCG, volume 13)

Abstract

Genome-wide analyses of mRNA, protein, or metabolite complements of biological systems produce unprecedented data sets. In contrast to such cellular composition data, in vivo quantification of molecular fluxes through metabolic networks links genes and proteins to higher-level functions that result from biochemical and regulatory interactions between network components. By unraveling novel or unexpected pathways in microbes, metabolic flux analyses begin to question the ability of well-known ’textbook’ pathways to portray flux through complex networks. Accumulating data on flux responses to genetic or environmental changes reveal general design principles and system properties of metabolic network operation. Beyond such discoveries, flux data assume increasingly important roles in completing network models and verifying or refuting their predictions. With recent advances in analytical accuracy, mathematical frameworks, available software, and experimental throughput, steady state flux analysis became a key methodology for metabolic systems biology.

Keywords

Metabolic Network Metabolic Flux Flux Analysis Corynebacterium Glutamicum Metabolic Flux Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. Aggarwal K, Lee KH (2003) Functional genomics and proteomics as a foundation for systems biology. Br Funct Genomics Prot 2:175-184Google Scholar
  2. 2. Almaas E, Kovacs B, Vicsek T, Oltavi ZN, Barabasi AL (2004) Global organization of metabolic fluxes in the bacterium Escherichia coli. Nature 427:839-843CrossRefPubMedGoogle Scholar
  3. 3. Arkin AP (2001) Synthetic cell biology. Curr Opin Biotechnol 12:638-644CrossRefPubMedGoogle Scholar
  4. 4. Auffray C, Imbeaud S, Roux-Rouquie M, Hood L (2003) From functional genomics to systems biology: concepts and practices. C R Biol 326:879-892PubMedGoogle Scholar
  5. 5. Bailey JE (1991) Toward a science of metabolic engineering. Science 252:1668-1675PubMedGoogle Scholar
  6. 6. Bailey JE (1999) Lessons from metabolic engineering for functional genomics and drug discovery. Nat Biotechnol 17:616-618CrossRefPubMedGoogle Scholar
  7. 7. Bailey JE (2001a) Complex biology with no parameters. Nature Biotechnol 19:503-504CrossRefGoogle Scholar
  8. 8. Bailey JE (2001b) Reflections on the scope and the future of metabolic engineering and its connections to functional genomics and drug discovery. Metab Eng 3:111-114CrossRefPubMedGoogle Scholar
  9. 9. Bar-Joseph Z, Gerber GK, Lee TI, Rinaldi NJ, Yoo JY, Robert F, Gordon DB, Fraenkel E, Jaakkola TS, Young RA, Gifford DK (2003) Computational discovery of gene modules and regulatory networks. Nat Biotechnol 21:1337-1342CrossRefPubMedGoogle Scholar
  10. 10. Barabasi AL, Oltavi ZN (2004) Network biology: Understanding the cell's functional organization. Nat Rev Genet 5:101-105CrossRefPubMedGoogle Scholar
  11. 11. Barkai N, Leibler S (1997) Robustness in simple biochemical networks. Nature 387:913-917CrossRefPubMedGoogle Scholar
  12. 12. Bhalla US, Iyengar R (1999) Emergent properties of networks of biological signaling pathways. Science 283:381-387CrossRefPubMedGoogle Scholar
  13. 13. Bhalla US, Ram PT, Iyengar R (2002) MAP kinase phosphatase as a locus of flexibility in a mitogen-activated protein kinase signaling network. Science 297:1018-1023CrossRefPubMedGoogle Scholar
  14. 14. Bialek W, Botstein D (2004) Introductory science and mathematics education for 21st-century biologists. Science 303:788-790CrossRefPubMedGoogle Scholar
  15. 15. Blank LM, Kuepfer L, Sauer U (2005a) Large-scale 13C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast. Genome Biol (in press)Google Scholar
  16. 16. Blank LM, Lehmbeck F, Sauer U (2005b) Metabolic flux and network analysis in 14 hemiascomycetous yeasts. FEMS Microbiol Lett (ePub ahead of print)Google Scholar
  17. 17. Blank LM, Sauer U (2004) TCA cycle activity in Saccharomyces cerevisiae is a function of the environmentally determined specific growth and glucose uptake rate. Microbiology 150:1085-1093CrossRefPubMedGoogle Scholar
  18. 18. Bonarius HPJ, Schmid G, Tramper J (1997) Flux analysis of underdetermined metabolic networks: the quest for the missing constraint. Trends Biotechnol 15:308-314CrossRefGoogle Scholar
  19. 19. Bray D (2001) Reasoning for results. Nature 412:863CrossRefPubMedGoogle Scholar
  20. 20. Buchholz A, Takors R, Wandrey C (2001) Quantification of intracellular metabolites in Escherichia coli K12 using liquid chromatographic-electrospray ionization tandem mass spectrometric techniques. Anal Biochem 295:129-137CrossRefPubMedGoogle Scholar
  21. 21. Burgard AP, Nikolaev EV, Schilling CH, Maranas CD (2004) Flux coupling analysis of genome-scale metabolic network reconstructions. Genome Res 14:301-314CrossRefPubMedGoogle Scholar
  22. 22. Canonaco F, Hess TA, Heri S, Wang T, Szyperski T, Sauer U (2001) Metabolic flux response to phosphoglucose isomerase knock-out in Escherichia coli and impact of overexpression of the soluble transhydrogenase UdhA. FEMS Microbiol Lett 204:247-252CrossRefPubMedGoogle Scholar
  23. 23. Castellanos M, Wilson DB, Shuler ML (2004) A modular minimal cell model: purine and pyrimidine transport and metabolism. Proc Natl Acad Sci USA 101:6681-6686CrossRefPubMedGoogle Scholar
  24. 24. Chassagnole C, Noisommit-Rizzi N, Schmid JW, Mauch K, Reuss M (2002) Dynamic modeling of the central carbon metabolism of Escherichia coli. Biotechnol Bioeng 79:53-73Google Scholar
  25. 25. Christensen B, Christiansen T, Gombert AK, Nielsen J (2001) Simple and robust method for estimation of the split ratio between the oxidative pentose phosphate pathways and the Embden-Meyerhof-Parnas pathway in microorganisms. Biotechnol Bioeng 74:517-523CrossRefPubMedGoogle Scholar
  26. 26. Christensen B, Gombert AK, Nielsen J (2002) Analysis of flux estimates based on 13C-labeling experiments. Eur J Biochem 269:2795-2800CrossRefPubMedGoogle Scholar
  27. 27. Christensen B, Nielsen J (1999) Metabolic network analysis. Adv Biochem Eng Biotechnol 66:209-231Google Scholar
  28. 28. Christiansen T, Christensen B, Nielsen J (2002) Metabolic network analysis of Bacillus clausii on minimal and semirich medium using 13C-labeled glucose. Metab Eng 4:159-169CrossRefPubMedGoogle Scholar
  29. 29. Covert MW, Knight EM, Reed JL, Herrgard MJ, Palsson BO (2004) Integrating high-throughput and computational data elucidates bacterial networks. Nature 429:92-96CrossRefPubMedGoogle Scholar
  30. 30. Covert MW, Palsson BO (2002) Transcriptional regulation in constraints-based metabolic models of Escherichia coli. J Biol Chem 277:28058-28064CrossRefPubMedGoogle Scholar
  31. 31. Covert MW, Schilling CH, Famili I, Edwards JS, Goryanin II, Selkov E, Palsson BO (2001) Metabolic modeling of microbial strains in silico. Trends Biochem Sci 26:179-186CrossRefPubMedGoogle Scholar
  32. 32. Csete ME, Doyle JC (2002) Reverse engineering of biological complexity. Science 295:1664-1669CrossRefPubMedGoogle Scholar
  33. 33. D'Ari R, Casadesus J (1998) Underground metabolism. Bioessays 20:181-186CrossRefPubMedGoogle Scholar
  34. 34. Daran-Lapujade P, Jansen ML, Daran JM, van Gulik W, De Winde JH, Pronk JT (2004) Role of transcriptional regulation in controlling fluxes in central carbon metabolism of Saccharomyces cerevisiae, a chemostat culture study. J Biol Chem 279:9125-9138CrossRefPubMedGoogle Scholar
  35. 35. Dauner M, Bailey JE, Sauer U (2001a) Metabolic flux analysis with a comprehensive isotopomer model in Bacillus subtilis. Biotechnol Bioeng 76:144-156CrossRefPubMedGoogle Scholar
  36. 36. Dauner M, Storni T, Sauer U (2001b) Bacillus subtilis metabolism and energetics in carbon-limited and carbon-excess chemostat culture. J Bacteriol 183:7308-7317CrossRefPubMedGoogle Scholar
  37. 37. Edwards JS, Palsson BO (2000) The Escherichia coli MG1655 in silico metabolic phenotype: its definition, characteristics, and capabilities. Proc Natl Acad Sci USA 97:5528-5533CrossRefPubMedGoogle Scholar
  38. 38. Emmerling M, Dauner M, Ponti A, Fiaux J, Hochuli M, Szyperski T, Wuthrich K, Bailey JE, Sauer U (2002) Metabolic flux responses to pyruvate kinase knockout in Escherichia coli. J Bacteriol 184:152-164CrossRefPubMedGoogle Scholar
  39. 39. Famili I, Förster J, Nielsen J, Palsson BO (2003) Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network. Proc Natl Acad Sci USA 100:13134-13139CrossRefPubMedGoogle Scholar
  40. 40. Fiaux J, Çakar ZP, Sonderegger M, Wüthrich K, Szyperski T, Sauer U (2003) Metabolic flux profiling of the yeasts Saccharomyces cerevisiae and Pichia stipitis. Euk Cell 2:170-180CrossRefGoogle Scholar
  41. 41. Fischer E, Sauer U (2003a) Metabolic flux profiling of Escherichia coli mutants in central carbon metabolism by GC-MS. Eur J Biochem 270:880-891CrossRefPubMedGoogle Scholar
  42. 42. Fischer E, Sauer U (2003b) A novel metabolic cycle catalyzes glucose oxidation and anaplerosis in hungry Escherichia coli. J Biol Chem 278:46446-46451CrossRefPubMedGoogle Scholar
  43. 43. Fischer E, Sauer U (2005) Large-scale in vivo flux analysis reveals rigidity and sub-optimal performance of Bacillus subtilis metabolism. Nat Genet (in press)Google Scholar
  44. 44. Fischer E, Zamboni N, Sauer U (2004) High-throughput metabolic flux analysis based on gas chromatography-mass spectrometry derived 13C constraints. Anal Biochem 325:308-316CrossRefPubMedGoogle Scholar
  45. 45. Francke C, Postma PW, Westerhoff HV, Blom JG, Peletier MA (2003) Why the phosphotransferase system of Escherichia coli escapes diffusion limitation. Biophys J 85:612-622PubMedGoogle Scholar
  46. 46. Fuhrer T, Fischer E, Sauer U (2005) Experimental identification and quantification of glucose metabolism in seven bacterial species. J Bacteriol 187:1581-1590CrossRefPubMedGoogle Scholar
  47. 47. Gallagher R, Appenzeller T (1999) Beyond reductionism. Science 284:79CrossRefGoogle Scholar
  48. 48. Ginkel M, Kremling A, Nutsch T, Rehner R, Gilles ED (2003) Modular modeling of cellular systems with ProMoT/Diva. Bioinformatics 19:1169-1176CrossRefPubMedGoogle Scholar
  49. 49. Grivet J-P, Delort A-M, Portais J-C (2003) NMR and microbiology: from physiology to metabolomics. Biochimie 85:823-840CrossRefPubMedGoogle Scholar
  50. 50. Gu Z, Steinmetz LM, Gu X, Scharfe C, Davis RW, Li W-H (2003) Role of duplicate genes in genetic robustness against null mutations. Nature 421:63-66CrossRefPubMedGoogle Scholar
  51. 51. Gunnarsson N, Mortensen UH, Sosio M, Nielsen J (2004) Identification of the Entner-Doudoroff pathway in an antibiotic-producing actinomycete species. Mol Microbiol 52:895-902CrossRefPubMedGoogle Scholar
  52. 52. Heinrich R, Rapoport TA (1974) A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. Eur J Biochem 42:39-95Google Scholar
  53. 53. Hellerstein MK (2003) In vivo measurement of fluxes through metabolic pathways: The missing link in functional genomics and pharmaceutical research. Annu Rev Nutr 23:379-402CrossRefPubMedGoogle Scholar
  54. 54. Hellerstein MK, Neese RA (1999) Mass isotopomer distribution analysis at eight years: theoretical, analytical, and experimental considerations. Am J Physiol 276:E1146-E1170PubMedGoogle Scholar
  55. 55. Holden C (2002) Cell biology: alliance launched to model E. coli. Science 297:1459-1460CrossRefPubMedGoogle Scholar
  56. 56. Hua Q, Yang C, Baba T, Mori H, Shimizu K (2003) Responses of the central carbon metabolism in Escherichia coli to phosphoglucose isomerase and glucose-6-phosphate dehydrogenase knockouts. J Bacteriol 185:7053-7067CrossRefPubMedGoogle Scholar
  57. 57. Ibarra RU, Edwards JS, Palsson BO (2002) Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature 420:186-189CrossRefPubMedGoogle Scholar
  58. 58. Ideker T, Galitski T, Hood L (2001a) A new approach to decoding life: systems biology. Annu Rev Genomics Hum Genet 2:343-372CrossRefPubMedGoogle Scholar
  59. 59. Ideker T, Lauffenburger D (2003) Building with a scaffold: emerging strategies for high- to low-level cellular modeling. Trends Biotechnol 21:255-262CrossRefPubMedGoogle Scholar
  60. 60. Ideker T, Thorsson V, Ranish JA, Christmas R, Buhler J, Eng JK, Bumgarner R, Goodlett DR, Aebersold R, Hood L (2001b) Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292:929-934CrossRefPubMedGoogle Scholar
  61. 61. Isaacs FJ, Hasty J, Cantor CR, Collins JJ (2003) Prediction and measurement of an autoregulatory genetic module. Proc Natl Acad Sci USA 100:7714-7719CrossRefPubMedGoogle Scholar
  62. 62. Kacser H, Burns JA (1973) The control of flux. Symp Soc Exp Biol 27:65-104PubMedGoogle Scholar
  63. 63. Kell DB, Oliver SG (2003) Here is the evidence, now what is the hypothesis? The complementary roles of inductive and hypothesis-driven science in the post-genomic era. Bioessays 26:99-105CrossRefGoogle Scholar
  64. 64. Kholodenko BN, Kiyatkin A, Bruggeman FJ, Sontag E, Westerhoff HV, Hoek JB (2002) Untangling the wires: a strategy to trace functional interactions in signaling and gene networks. Proc Natl Acad Sci USA 99:12841-12846CrossRefPubMedGoogle Scholar
  65. 65. Kikuchi S, Fujimoto K, Kitagawa N, Fuchikawa T, Abe M, Oka K, Takei K, Tomita M (2003) Kinetic simulation of signal transduction system in hippocampal long-term potentiation with dynamic modeling of protein phosphatase 2A. Neural Netw 16:1389-1398CrossRefPubMedGoogle Scholar
  66. 66. Kitano H (2002a) Computational systems biology. Nature 420:206-210CrossRefPubMedGoogle Scholar
  67. 67. Kitano H (2002b) Systems biology: a brief overview. Science 295:1662-1664CrossRefPubMedGoogle Scholar
  68. 68. Klapa MI, Aon JC, Stephanopoulos G (2003) Systematic quantification of complex metabolic flux networks using stable isotopes and mass spectrometry. Eur J Biochem 270:3525-3542CrossRefPubMedGoogle Scholar
  69. 69. Koffas M, Roberge C, Lee K, Stephanopoulos G (1999) Metabolic engineering. Annu Rev Biomed Eng 1:535-557CrossRefPubMedGoogle Scholar
  70. 70. Lazebnik Y (2002) Can a biologist fix a radio? - Or, what I learned while studying apoptosis. Cancer Cell 2:179-182CrossRefPubMedGoogle Scholar
  71. 71. Lee E, Salic A, Kruger R, Heinrich R, Kirschner MW (2003) The roles of APC and axin derived from experimental and theoretical analysis of the Wnt pathway. PLoS Biol 1:E10-E15CrossRefPubMedGoogle Scholar
  72. 72. Maaheimo H, Fiaux J, Çakar ZP, Bailey JE, Sauer U, Szyperski T (2001) Central carbon metabolism of Saccharomyces cerevisiae explored by biosynthetic fractional 13C labeling of common amino acids. Eur J Biochem 268:2464-2479CrossRefPubMedGoogle Scholar
  73. 73. Marcotte EM (2001) The path not taken. Nature Biotechnol 19:626-627CrossRefGoogle Scholar
  74. 74. Marx A, de Graaf AA, Wiechert W, Eggeling L, Sahm H (1996) Determination of the fluxes in the central metabolism of Corynebacterium glutamicum by nuclear magnetic resonance spectroscopy combined with metabolite balancing. Biotechnol Bioeng 49:111-129CrossRefGoogle Scholar
  75. 75. Marx A, Eikmanns BJ, Sahm H, de Graaf AA, Eggeling L (1999) Response of the central metabolism in Corynebacterium glutamicum to the use of an NADH-dependent glutamate dehydrogenase. Metabolic Eng 1:35-48CrossRefGoogle Scholar
  76. 76. Marx A, Hans S, Möckel B, Bathe B, de Graaf AA (2003) Metabolic phenotype of phosphoglucose isomerase mutants of Corynebacerium glutamicum. J Biotechnol 104:185-197CrossRefPubMedGoogle Scholar
  77. 77. Moreira dos Santos M, Gombert AK, Christensen B, Olsson L, Nielsen J (2003a) Identification of in vivo enzyme activities in the cometabolism of glucose and acetate by Saccharomyces cerevisiae by using 13C-labeled substrates. Eukar Cell 2:599-608CrossRefGoogle Scholar
  78. 78. Moreira dos Santos M, Thygesen G, Kötter P, Olsson L, Nielsen J (2003b) Aerobic physiology of redox-engineered Saccharomyces cerevisiae strains modified in the ammonium assimilation for increased NADPH availability. FEMS Yeast Res 4:59-68CrossRefPubMedGoogle Scholar
  79. 79. Moritz B, Striegel K, de Graaf AA, Sahm H (2002) Changes of pentose phosphate pathway flux in vivo in Corynebacterium glutamicum during leucine-limited batch cultivation as determined from intracellular metabolite concentration measurements. Metab Eng 4:295-305CrossRefPubMedGoogle Scholar
  80. 80. Neidhardt FC, Ingraham JL, Schaechter M (1990) Physiology of the bacterial cell: a molecular approach. Sinauer Associates, Inc., Sunderland, MassGoogle Scholar
  81. 81. Nissen TL, Anderlund M, Nielsen J, Villadsen J, Kielland-Brandt MC (2001) Expression of a cytoplasmic transhydrogenase in Saccharomyces cerevisiae results in formation of 2-oxoglutarate due to depletion of the NADPH pool. Yeast 18:19-32CrossRefPubMedGoogle Scholar
  82. 82. Nurse P (2003) Understanding cells. Nature 424:883CrossRefPubMedGoogle Scholar
  83. 83. Oh M-K, Liao JC (2000) Gene expression profiling by DNA microarrays and metabolic fluxes in Escherichia coli. Biotechnol Prog 16:278-286CrossRefPubMedGoogle Scholar
  84. 84. Palsson BO (2002) In silico biology through ”omis”. Nature Biotechnol 20:649-650CrossRefGoogle Scholar
  85. 85. Papin JA, Price ND, Wiback SJ, Fell DA, Palsson BO (2003) Metabolic pathways in the post-genome era. Trends Biochem Sci 28:250-258CrossRefPubMedGoogle Scholar
  86. 86. Papin JA, Stelling J, Price ND, Klamt S, Schuster S, Palsson BO (2004) Comparison of network-based pathway analysis methods. Trends Biotechnol 22:400-405CrossRefPubMedGoogle Scholar
  87. 87. Park SM, Shaw-Reid C, Sinskey AJ, Stephanopoulos G (1997) Elucidation of anaplerotic pathways in Corynebacterium glutamicum via 13C-NMR spectroscopy and GC-MS. Appl Microbiol Biotechnol 47:430-440CrossRefGoogle Scholar
  88. 88. Petersen S, de Graaf AA, Eggeling L, Möllney M, Wiechert W, Sahm H (2000) In vivo quantification of parallel and bidirectional fluxes in the anaplerosis of Corynebacterium glutamicum. J Biol Chem 275:35932-35941CrossRefPubMedGoogle Scholar
  89. 89. Portais J-C, Delort A-M (2002) Carbohydrate cycling in micro-organisms: what can 13C-NMR tell us? FEMS Microbiol Rev 26:375-402CrossRefPubMedGoogle Scholar
  90. 90. Price ND, Papin JA, Schilling CH, Palsson BO (2003) Genome-scale microbial in silico models: the constraints-based approach. Trends Biotechnol 21:162-169CrossRefPubMedGoogle Scholar
  91. 91. Purugganan M, Gibson G (2003) Merging ecology, molecular evolution, and functional genetics. Mol Ecol 12:1109-1112CrossRefPubMedGoogle Scholar
  92. 92. Rohlin L, Oh M-K, Liao JC (2001) Microbial pathway engineering for industrial processes: evolution, combinatorial biosynthesis and rational design. Curr Opin Microbiol 4:330-335CrossRefPubMedGoogle Scholar
  93. 93. Sanford K, Soucaille P, Whited G, Chotani G (2002) Genomics to fluxomics and physiomics - pathway engineering. Curr Opin Microbiol 5:318-322CrossRefPubMedGoogle Scholar
  94. 94. Sauer U (2004) High-throughput phenomics: experimental methods for mapping fluxomes. Curr Opin Biotechnol 15:58-63CrossRefPubMedGoogle Scholar
  95. 95. Sauer U, Canonaco F, Heri S, Perrenoud A, Fischer E (2004) The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J Biol Chem 279:6613-6619CrossRefPubMedGoogle Scholar
  96. 96. Sauer U, Hatzimanikatis V, Bailey JE, Hochuli M, Szyperski T, Wüthrich K (1997) Metabolic fluxes in riboflavin-producing Bacillus subtilis. Nat Biotechnol 15:448-452CrossRefPubMedGoogle Scholar
  97. 97. Sauer U, Lasko DR, Fiaux J, Hochuli M, Glaser R, Szyperski T, Wuthrich K, Bailey JE (1999) Metabolic flux ratio analysis of genetic and environmental modulations of Escherichia coli central carbon metabolism. J Bacteriol 181:6679-6688PubMedGoogle Scholar
  98. 98. Schmidt K, Carlsen M, Nielsen J, Villadsen J (1997) Modeling isotopomer distributions in biochemical networks using isotopomer mapping matrices. Biotechnol Bioeng 55:831-840CrossRefGoogle Scholar
  99. 99. Schoeberl B, Eichler-Jonsson C, Gilles ED, Muller G (2002) Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nature Biotechnol 20:370-375CrossRefGoogle Scholar
  100. 100. Schuster S, Dandekar T, Fell DA (1999) Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. Trends Biotechnol 17:53-60CrossRefPubMedGoogle Scholar
  101. 101. Schuster S, Fell DA, Dandekar T (2000) A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nature Biotechnol 18:326-332CrossRefGoogle Scholar
  102. 102. Segre D, Vitkup D, Church GM (2002) Analysis of optimality in natural perturbed metabolic networks. Proc Natl Acad Sci USA 99:15112-15117CrossRefPubMedGoogle Scholar
  103. 103. Selinger DW, Wright MA, Church GM (2003) On the complete determination of biological systems. Trends Biotechnol 21:252-254CrossRefGoogle Scholar
  104. 104. Shen-Orr SS, Milo R, Mangan S, Alon U (2002) Network motifs in the transcriptional regulation network of Escherichia coli. Nature Genet 31:64-68CrossRefPubMedGoogle Scholar
  105. 105. Sherry AD, Jeffrey FM, Malloy CR (2004) Analytical solutions for 13C isotopomer analysis of complex metabolic conditions: substrate oxidation, multiple pyruvate cycles, and gluconeogenesis. Metab Eng 6:12-24CrossRefPubMedGoogle Scholar
  106. 106. Shulman RG, Rothman DL (2001) 13C NMR of intermediary metabolism: implications for systemic physiology. Annu Rev Physiol 63:15-48CrossRefPubMedGoogle Scholar
  107. 107. Sonderegger M, Jeppsson M, Hahn-Hägerdal B, Sauer U (2004) The molecular basis for anaerobic growth of Saccharomyces cerevisiae on xylose, investigated by global gene expression and metabolic flux analysis. Appl Environ Microbiol 70:2307-2317CrossRefPubMedGoogle Scholar
  108. 108. Stelling J, Klamt S, Bettenbrock K, Schuster S, Gilles ED (2002) Metabolic network structure determines key aspects of functionality and regulation. Nature 420:190-193CrossRefPubMedGoogle Scholar
  109. 109. Stephanopoulos G (1999) Metabolic fluxes and metabolic engineering. Metabolic Eng 1:1-11CrossRefGoogle Scholar
  110. 110. Stephanopoulos G, Alper H, Moxley J (2004) Exploiting biological complexity for strain improvement through systems biology. Nat Biotechnol 22:1261-1267CrossRefPubMedGoogle Scholar
  111. 111. Stewart I (2004) Networking opportunity. Nature 427:601-604CrossRefPubMedGoogle Scholar
  112. 112. Szyperski T (1995) Biosynthetically directed fractional 13C-labeling of proteinogenic amino acids: an efficient analytical tool to investigate intermediary metabolism. Eur J Biochem 232:433-448CrossRefPubMedGoogle Scholar
  113. 113. Szyperski T (1998) 13C-NMR, MS and metabolic flux balancing in biotechnological research. Q Rev Biophys 31:41-106CrossRefPubMedGoogle Scholar
  114. 114. Szyperski T, Glaser RW, Hochuli M, Fiaux J, Sauer U, Bailey JE, Wuthrich K (1999) Bioreaction network topology and metabolic flux ratio analysis by biosynthetic fractional 13C-labeling and two-dimensional NMR spectroscopy. Metabolic Eng 1:189-197CrossRefGoogle Scholar
  115. 115. ter Kuile BH, Westerhoff HV (2001) Transcriptome meets metabolome: hierarchical and metabolic regulation of the glycolytic pathway. FEBS Lett 200:169-171Google Scholar
  116. 116. van Winden W, Verheijen P, Heijnen JJ (2001a) Possible pitfalls of flux calculations based on 13C-labeling. Metabolic Eng 3:151-162CrossRefGoogle Scholar
  117. 117. van Winden WA, Heijnen JJ, Verheijen PJ (2002) Cummulative bondomers: A new concept in flux analysis from 2D [13C, 1H] COSY NMR data. Biotechnol Bioeng 80:731-745CrossRefPubMedGoogle Scholar
  118. 118. van Winden WA, Heijnen JJ, Verheijen PJ, Grievink J (2001b) A priori analysis of metabolic flux identifiability from 13C-labeling data. Biotechnol Bioeng 74:505-516CrossRefPubMedGoogle Scholar
  119. 119. van Winden WA, van Dam JC, Ras C, Kleijn RJ, Vinke JL, van Gulik WM, Heijnen JJ (2005) Metabolic-flux analysis of Saccharomyces cerevisiae CEN.PK113-7D based on mass isotopomer measurements of 13C-labeled primary metabolites. FEMS Yeast Res 5: 559-568CrossRefPubMedGoogle Scholar
  120. 120. van Winden WA, van Gulik WM, Schipper D, Verheijen PJ, Krabben P, Vinke JL, Heijnen JJ (2003) Metabolic flux and metabolic network analysis of Penicillium chrysogenum using 2D [13C, 1H] COSY NMR measurements and cumulative bondomer simulation. Biotechnol Bioeng 83:75-92CrossRefPubMedGoogle Scholar
  121. 121. Varma A, Palsson BO (1994) Metabolic flux balancing: Basic concepts, scientific, and practical use. Bio/Technol 12:994-998Google Scholar
  122. 122. Varner J (2000) Large-scale prediction of phenotype: concept. Biotechnol Bioeng 69:664-678CrossRefPubMedGoogle Scholar
  123. 123. Verho R, Richard P, Jonson PH, Sundqvist L, Londesborough J, Penttilä M (2002) Identification of the fist fungal NADP-GAPDH from Kluveromyces lactis. Biochemistry 41:13833-13838CrossRefPubMedGoogle Scholar
  124. 124. von Dassow G, Meir E, Munro EM, Odell GM (2000) The segment polarity network is a robust developmental module. Nature 406:188-192CrossRefPubMedGoogle Scholar
  125. 125. Walsh K, Koshland DE Jr (1984) Determination of flux through the branch point of two metabolic cycles. J Biol Chem 259:9646-9654PubMedGoogle Scholar
  126. 126. Weckwerth W, Fiehn O (2002) Can we discover novel pathways using metabolomic analysis? Curr Opin Biotechnol 13:156-160CrossRefPubMedGoogle Scholar
  127. 127. Westerhoff HV, Palsson BO (2004) The evolution of molecular biology into systems biology. Nat Biotechnol 22:1249-1252CrossRefPubMedGoogle Scholar
  128. 128. Wiback SJ, Mahadevan R, Palsson BO (2004) Using metabolic flux data to further constrain the metabolic solution space and predict internal flux pattern: the Escherichia coli spectrum. Biotechnol Bioeng 86:317-331CrossRefPubMedGoogle Scholar
  129. 129. Wiechert W (2001) 13C metabolic flux analysis. Metabolic Eng 3:195-206CrossRefGoogle Scholar
  130. 130. Wiechert W (2002) Modeling and simulation: tools for metabolic engineering. J Biotechnol 94:37-63CrossRefPubMedGoogle Scholar
  131. 131. Wiechert W, Möllney M, Isermann N, Wurzel M, de Graaf AA (1999) Bidirectional reaction steps in metabolic networks: III. Explicit solution and analysis of isotopomer labeling systems. Biotechnol Bioeng 66:69-85CrossRefPubMedGoogle Scholar
  132. 132. Wiechert W, Möllney M, Petersen S, de Graaf AA (2001) A universal framework for 13C metabolic flux analysis. Metab Eng 3:265-283CrossRefPubMedGoogle Scholar
  133. 133. Wittmann C (2002) Metabolic flux analysis using mass spectroscopy. Adv Biochem Eng Biotechnol 74:39-64PubMedGoogle Scholar
  134. 134. Wittmann C, Heinzle E (2001) Modeling and experimental design for metabolic flux analysis of lysine-producing Corynebacteria by mass spectrometry. Metabolic Eng 3:173-191CrossRefGoogle Scholar
  135. 135. Wittmann C, Heinzle E (2002) Genealogy profiling through strain improvement by using metabolic network analysis: metabolic flux genealogy of several generations of lysine-producing Corynebacteria. Appl Environ Microbiol 68:5843-5859CrossRefPubMedGoogle Scholar
  136. 136. Wolf DM, Arkin AP (2003) Motifs, modules and games in bacteria. Curr Opin Microbiol 6:125-134CrossRefPubMedGoogle Scholar
  137. 137. Yang C, Hua Q, Baba T, Mori H, Shimizu K (2003) Analysis of Escherichia coli anaplerotic metabolism and its regulation mechanisms from the metabolic responses to altered dilution rates and phosphoenolpyruvate carboxykinase knockout. Biotechnol Bioeng 84:129-144CrossRefPubMedGoogle Scholar
  138. 138. Zak DE, Gonye GE, Schwaber JS, Doyle III FJ (2003) Importance of input perturbations and stochastic gene expression in the reverse engineering of genetic regulatory networks: insights from an identifiability analysis of an in silico network. Genome Res 13:2394-2405CrossRefGoogle Scholar
  139. 139. Zamboni N, Fischer E, Laudert D, Aymerich S, Hohmann H-P, Sauer U (2004a) The Bacillus subtilis yqjI gene encodes the NADP+-dependent 6-P-gluconate dehydrogenase in the pentose phosphate pathway. J Bacteriol 186:4528-4534CrossRefPubMedGoogle Scholar
  140. 140. Zamboni N, Maaheimo H, Szyperski T, Hohmann H-P, Sauer U (2004b) The phosphoenolpyruvate carboxykinase also catalyzes C3 carboxylation at the interface of glycolysis and the TCA cycle of Bacillus subtilis. Metab Eng 6:277-284CrossRefPubMedGoogle Scholar
  141. 141. Zamboni N, Sauer U (2003) Knockout of the high-coupling cytochrome aa3 oxidase reduces TCA cycle fluxes in Bacillus subtilis. FEMS Microbiol Lett 226:121-126CrossRefPubMedGoogle Scholar
  142. 142. Zhao J, Baba T, Mori H, Shimizu K (2003) Analysis of metabolic and physiological responses to gnd knockout in Escherichia coli by using C-13 tracer experiment and enzyme activity measurements. FEMS Microbiol Lett 220:295-301CrossRefPubMedGoogle Scholar
  143. 143. Zupke C, Tompkins R, Yarmush D, Yarmush M (1997) Numerical isotopomer analysis: estimation of metabolic activity. Anal Biochem 247:287-293CrossRefPubMedGoogle Scholar

Authors and Affiliations

  1. 1.Institute of Molecular Systems Biology, ETH Zürich, CH-8093 ZürichSwitzerland

Personalised recommendations