Advertisement

Mechanistic and modular approaches to modeling and inference of cellular regulatory networks

  • Boris N. KholodenkoEmail author
  • Frank J. Bruggeman
  • Herbert M. Sauro
Part of the Topics in Current Genetics book series (TCG, volume 13)

Abstract

In this chapter we wish to present a vision of systems biology as a discipline that generates new insight and knowledge with quantitative and predictive explanatory power at the system level. We will review work that combines quantitative measurements and mathematical and computational modeling of signaling networks to link molecular mechanisms to physiological responses. An emerging synergistic modeling approach is presented that uses novel approaches to network inference, molecular dynamic simulations, chemical kinetics and reaction-diffusion equations, and functional modularization in biochemical networks.

Keywords

Cellular Network Epidermal Growth Factor Receptor Signaling Network Inference Receptor Tyrosine Kinase Signaling Connection Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. Asthagiri AR, Lauffenburger DA (2001) A computational study of feedback effects on signal dynamics in a mitogen-activated protein kinase (mapk) pathway model. Biotechnol Prog 17:227-239CrossRefPubMedGoogle Scholar
  2. 2. Bogdan S, Klambt C (2001) Epidermal growth factor receptor signaling. Curr Biol 11:R292-R295CrossRefPubMedGoogle Scholar
  3. 3. Brightman FA, Fell DA (2000) Differential feedback regulation of the MAPK cascade underlies the quantitative differences in EGF and NGF signalling in PC12 cells [In Process Citation]. FEBS Lett 482:169-174CrossRefPubMedGoogle Scholar
  4. 4. Brown GC, Hoek JB, Kholodenko BN (1997) Why do protein kinase cascades have more than one level? Trends Biochem Sci 22:288CrossRefGoogle Scholar
  5. 5. Brown GC, Kholodenko BN (1999) Spatial gradients of cellular phospho-proteins. FEBS Lett 457:452-454CrossRefPubMedGoogle Scholar
  6. 6. Bruggeman FJ, Westerhoff HV, Hoek JB, Kholodenko BN (2002) Modular response analysis of cellular regulatory networks. J Theor Biol 218:507-520PubMedGoogle Scholar
  7. 7. Carraway KL, Carraway CA (1995) Signaling, mitogenesis, and the cytoskeleton: where the action is. Bioessays 17:171-175CrossRefPubMedGoogle Scholar
  8. 8. Cherniack AD, Klarlund JK, Conway BR, Czech MP (1995) Disassembly of son-of-sevenless proteins from Grb2 during p21ras desensitization by insulin. J Biol Chem 270:1485-1488CrossRefPubMedGoogle Scholar
  9. 9. de la Fuente A, Brazhnik P, Mendes P (2002) Linking the genes: inferring quantitative gene networks from microarray data. Trends Genet 18:395-398CrossRefPubMedGoogle Scholar
  10. 10. Della Rocca GJ, van Biesen T, Daaka Y, Luttrell DK, Luttrell LM, Lefkowitz RJ (1997) Ras-dependent mitogen-activated protein kinase activation by G protein-coupled receptors. Convergence of Gi- and Gq-mediated pathways on calcium/calmodulin, Pyk2, and Src kinase. J Biol Chem 272:19125-19132CrossRefPubMedGoogle Scholar
  11. 11. Denhardt DT (1996) Signal-transducing protein phosphorylation cascades mediated by Ras/Rho proteins in the mammalian cell: the potential for multiplex signalling. Biochem J 318:729-747PubMedGoogle Scholar
  12. 12. Di Guglielmo GM, Baass PC, Ou WJ, Posner BI, Bergeron JJ (1994) Compartmentalization of SHC, GRB2 and mSOS, and hyperphosphorylation of Raf-1 by EGF but not insulin in liver parenchyma. EMBO J 13:4269-4277PubMedGoogle Scholar
  13. 13. Goldstein B, Faeder JR, Hlavacek WS (2004) Mathematical and computational models of immune-receptor signalling. Nat Rev Immunol 4:445-456CrossRefPubMedGoogle Scholar
  14. 14. Gutkind JS (1998) The pathways connecting G protein-coupled receptors to the nucleus through divergent mitogen-activated protein kinase cascades. J Biol Chem 273:1839-1842CrossRefPubMedGoogle Scholar
  15. 15. Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402:C47-C52CrossRefPubMedGoogle Scholar
  16. 16. Haugh JM, Lauffenburger DA (1997) Physical modulation of intracellular signaling processes by locational regulation. Biophys J 72:2014-2031PubMedGoogle Scholar
  17. 17. Heinrich R, Schuster S (1996) The regulation of cellular systems, First edn. Chapman & Hall, New YorkGoogle Scholar
  18. 18. Hu Y, Bowtell DD (1996) Sos1 rapidly associates with Grb2 and is hypophosphorylated when complexed with the EGF receptor after EGF stimulation. Oncogene 12:1865-1872PubMedGoogle Scholar
  19. 19. Ingalls BP (2004) Frequency domain approach to sensitivity analysis of biochemical systems. J Phys Chem 108:1143-1152Google Scholar
  20. 20. Kacser H, Burns JA (1973) The control of flux. Symp Soc Exp Biol 27:65-104PubMedGoogle Scholar
  21. 21. Kholodenko BN (2002) MAP kinase cascade signaling and endocytic trafficking: A marriage of convenience? Trends Cell Biol 12:173-177CrossRefPubMedGoogle Scholar
  22. 22. Kholodenko BN (2003) Four-dimensional organization of protein kinase signaling cascades: the roles of diffusion, endocytosis and molecular motors. J Exp Biol 206:2073-2082CrossRefPubMedGoogle Scholar
  23. 23. Kholodenko BN, Brown GC, Hoek JB (2000a) Diffusion control of protein phosphorylation in signal transduction pathways. Biochem J 350 Pt 3:901-907Google Scholar
  24. 24. Kholodenko BN, Demin OV, Moehren G, Hoek JB (1999) Quantification of short term signaling by the epidermal growth factor receptor. J Biol Chem 274:30169-30181CrossRefPubMedGoogle Scholar
  25. 25. Kholodenko BN, Hoek JB, Westerhoff HV (2000b) Why cytoplasmic signalling proteins should be recruited to cell membranes. Trends Cell Biol 10:173-178CrossRefPubMedGoogle Scholar
  26. 26. Kholodenko BN, Hoek JB, Westerhoff HV, Brown GC (1997) Quantification of information transfer via cellular signal transduction pathways [published erratum appears in FEBS Lett 1997 Dec 8;419(1):150]. FEBS Lett 414:430-434CrossRefPubMedGoogle Scholar
  27. 27. Kholodenko BN, Kiyatkin A, Bruggeman FJ, Sontag E, Westerhoff HV, Hoek JB (2002) Untangling the wires: a strategy to trace functional interactions in signaling and gene networks. Proc Natl Acad Sci USA 99:12841-12846CrossRefPubMedGoogle Scholar
  28. 28. Kholodenko BN, Molenaar D, Schuster S, Heinrich R, Westerhoff HV (1995a) Defining control coefficients in ”non-ideal” metabolic pathways. Biophys Chem 56:215-226CrossRefGoogle Scholar
  29. 29. Kholodenko BN, Schuster S, Rohwer JM, Cascante M, Westerhoff HV (1995b) Composite control of cell function: Metabolic pathways behaving as single control units. FEBS Lett 368:1-4CrossRefPubMedGoogle Scholar
  30. 30. Kholodenko BN, Sontag ED (2002) Determination of Functional Network Structure from Local Parameter Dependence Data. arXiv: physics/0205003Google Scholar
  31. 31. Kholodenko BN, Westerhoff HV (1995) The macroworld versus the microworld of biochemical regulation and control. Trends Biochem Sci 20:52-54CrossRefPubMedGoogle Scholar
  32. 32. Kong M, Mounier C, Wu J, Posner BI (2000) Epidermal Growth Factor-induced Phosphatidylinositol 3-Kinase Activation and DNA Synthesis. Idenification of Grb2-associated binder 2 as the major mediator in rat hepatocytes. J Biol Chem 275:36035-36042CrossRefPubMedGoogle Scholar
  33. 33. Krauss S, Brand MD, Buttgereit F (2001) Signaling takes a breath - new quantitative perspectives on bioenergetics and signal transduction. Immunity 15:497-502CrossRefPubMedGoogle Scholar
  34. 34. Langlois WJ, Sasaoka T, Saltiel AR, Olefsky JM (1995) Negative feedback regulation and desensitization of insulin- and epidermal growth factor-stimulated p21ras activation. J Biol Chem 270:25320-25323CrossRefPubMedGoogle Scholar
  35. 35. Lauffenburger DA (2000) Cell signaling pathways as control modules: complexity for simplicity? Proc Natl Acad Sci USA 97:5031-5033CrossRefPubMedGoogle Scholar
  36. 36. Lloyd AC, Obermuller F, Staddon S, Barth CF, McMahon M, Land H (1997) Cooperating oncogenes converge to regulate cyclin/cdk complexes. Genes Dev 11:663-677PubMedGoogle Scholar
  37. 37. Markevich NI, Hoek JB, Kholodenko BN (2004a) Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. J Cell Biol 164:353-359CrossRefPubMedGoogle Scholar
  38. 38. Markevich NI, Moehren G, Demin O, Kiyatkin A, Hoek JB, Kholodenko BN (2004b) Signal processing at the Ras circuit: What shapes Ras activation patterns? IEE Systems Biology 1:104-113CrossRefGoogle Scholar
  39. 39. Marshall CJ (1995) Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80:179-185CrossRefPubMedGoogle Scholar
  40. 40. McCawley LJ, Li S, Wattenberg EV, Hudson LG (1999) Sustained activation of the mitogen-activated protein kinase pathway. A mechanism underlying receptor tyrosine kinase specificity for matrix metalloproteinase-9 induction and cell migration. J Biol Chem 274:4347-4353CrossRefPubMedGoogle Scholar
  41. 41. McLaughlin S, Aderem A (1995) The myristoyl-electrostatic switch: a modulator of reversible protein- membrane interactions. Trends Biochem Sci 20:272-276CrossRefPubMedGoogle Scholar
  42. 42. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298:824-827CrossRefPubMedGoogle Scholar
  43. 43. Mochly-Rosen D (1995) Localization of protein kinases by anchoring proteins: a theme in signal transduction. Science 268:247-251PubMedGoogle Scholar
  44. 44. Moehren G, Markevich N, Demin O, Kiyatkin A, Goryanin I, Hoek JB, Kholodenko BN (2002) Temperature dependence of the epidermal growth factor receptor signaling network can be accounted for by a kinetic model. Biochemistry 41:306-320CrossRefPubMedGoogle Scholar
  45. 45. Niehrs C, Pollet N (1999) Synexpression groups in eukaryotes. Nature 402:483-487CrossRefPubMedGoogle Scholar
  46. 46. Pawson T (1995) Protein modules and signalling networks. Nature 373:573-580CrossRefPubMedGoogle Scholar
  47. 47. Pawson T, Nash P (2003) Assembly of cell regulatory systems through protein interaction domains. Science 300:445-452CrossRefPubMedGoogle Scholar
  48. 48. Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabasi AL (2002) Hierarchical organization of modularity in metabolic networks. Science 297:1551-1555CrossRefPubMedGoogle Scholar
  49. 49. Saso K, Moehren G, Higashi K, Hoek JB (1997) Differential inhibition of epidermal growth factor signaling pathways in rat hepatocytes by long-term ethanol treatment. Gastroenterology 112:2073-2088CrossRefPubMedGoogle Scholar
  50. 50. Sauro HM, Kholodenko BN (2004) Quantitative analysis of signaling networks. Prog Biophys Mol Biol 86:5-43CrossRefPubMedGoogle Scholar
  51. 51. Savageau MA (1976) Biochemical systems analysis: a study of function and design in molecular biology. Addison-Wesley Publ Co, LondonGoogle Scholar
  52. 52. Schlessinger J (2000) Cell signaling by receptor tyrosine kinases. Cell 103:211-225CrossRefPubMedGoogle Scholar
  53. 53. Schoeberl B, Eichler-Jonsson C, Gilles ED, Muller G (2002) Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat Biotechnol 20:370-375CrossRefPubMedGoogle Scholar
  54. 54. Schuster S, Kahn D, Westerhoff HV (1993) Modular analysis of the control of complex metabolic pathways. Biophys Chem 48:1-17CrossRefPubMedGoogle Scholar
  55. 55. Sewing A, Wiseman B, Lloyd AC, Land H (1997) High-intensity Raf signal causes cell cycle arrest mediated by p21Cip1. Mol Cell Biol 17:5588-5597PubMedGoogle Scholar
  56. 56. Shymko RM, De Meyts P, Thomas R (1997) Logical analysis of timing-dependent receptor signalling specificity: Application to the insulin receptor metabolic and mitogenic signalling pathways. Biochem J 326:463-469PubMedGoogle Scholar
  57. 57. Sontag E, Kiyatkin A, Kholodenko BN (2004) Inferring dynamic architecture of cellular networks using time series of gene expression, protein and metabolite Data. Bioinformatics 20:1877-1886CrossRefPubMedGoogle Scholar
  58. 58. Stark J, Callard R, Hubank M (2003) From the top down: towards a predictive biology of signalling networks. Trends Biotechnol 21:290-293CrossRefPubMedGoogle Scholar
  59. 59. Suenaga A, Kiyatkin AB, Hatakeyama M, Futatsugi N, Okimoto N, Hirano Y, Narumi T, Kawai A, Susukita R, Koishi T, Furusawa H, Yasuoka K, Takada N, Ohno Y, Taiji M, Ebisuzaki T, Hoek JB, Konagaya A, Kholodenko BN (2004) Tyr-317 phosphorylation increases Shc structural rigidity and reduces coupling of domain motions remote from the phosphorylation site as revealed by molecular dynamics simulations. J Biol Chem 279:4657-4662CrossRefPubMedGoogle Scholar
  60. 60. Tyson JJ, Chen KC, Novak B (2003) Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol 5:221-231CrossRefGoogle Scholar
  61. 61. Tyson JJ, Novak B (2001) Regulation of the eukaryotic cell cycle: molecular antagonism, hysteresis, and irreversible transitions. J Theor Biol 210:249-263CrossRefPubMedGoogle Scholar
  62. 62. Tyson JJ, Novak B, Odell GM, Chen K, Thron CD (1996) Chemical kinetic theory: understanding cell-cycle regulation. Trends Biochem Sci 21:89-96CrossRefPubMedGoogle Scholar
  63. 63. van Biesen T, Luttrell LM, Hawes BE, Lefkowitz RJ (1996) Mitogenic signaling via G protein-coupled receptors. Endocr Rev 17:698-714CrossRefPubMedGoogle Scholar
  64. 64. Wolf DM, Arkin AP (2003) Motifs, modules and games in bacteria. Curr Opin Microbiol 6:125-134CrossRefPubMedGoogle Scholar
  65. 65. Woods D, Parry D, Cherwinski H, Bosch E, Lees E, McMahon M (1997) Raf-induced proliferation or cell cycle arrest is determined by the level of Raf activity with arrest mediated by p21Cip1. Mol Cell Biol 17:5598-5611PubMedGoogle Scholar
  66. 66. York RD, Yao H, Dillon T, Ellig CL, Eckert SP, McCleskey EW, Stork PJ (1998) Rap1 mediates sustained MAP kinase activation induced by nerve growth factor. Nature 392:622-626CrossRefPubMedGoogle Scholar
  67. 67. York RD, Yao H, Dillon T, Ellig CL, Eckert SP, McCleskey EW, Stork PJ (1998) Rap1 mediates sustained MAP kinase activation induced by nerve growth factor. Nature 392:622-626CrossRefPubMedGoogle Scholar

Authors and Affiliations

  • Boris N. Kholodenko
    • 1
    Email author
  • Frank J. Bruggeman
    • 2
  • Herbert M. Sauro
    • 3
  1. 1.Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, 1020 Locust St., Philadelphia, PA 19107USA
  2. 2.Molecular Cell Physiology & Integrative Bioinformatics, Biocentrum & Faculty of Earth and Life Sciences, De Boelelaan 1085, 1081 HV, Vrije Universiteit, AmsterdamThe Netherlands
  3. 3.Keck Graduate Institute, 535 Watson Drive, Claremont, CA 91106, USA, and Control and Dynamical Systems, California Institute of Technology, Pasadena, CA 91125USA

Personalised recommendations