Skip to main content

Materials Chemistry of Group 13 Nitrides

  • Chapter
  • First Online:
Precursor Chemistry of Advanced Materials

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 9))

Abstract

The OMVPE process has been used to grow thin films of group 13 nitrides, namely GaN, InN, and AlN. In recent years there has been a great deal of interest in obtaining insights into the gas-phase and surface chemistry involved in this process, as well as in developing various organometallic compounds used as precursors for depositing the nitrides. Among them, single-molecule precursors containing the metal and nitrogen atoms in a single molecule, including amide- or azide-based compounds, are being investigated as an alternative for the alkyls of Ga, Al, and In currently used. From a technological point of view, while there is no real substitute for actual practical application in this field, some of the research work reported over the past decade or so has shown promise. In this article, we discuss the various precursor chemistries that have been investigated in relation to the growth of group 13 nitrides, emphasizing epitaxial films but also giving reference to interesting nanostructured morphologies of these materials, obtained from molecular precursors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Waser R (ed) (2003) Nanoelectronics and information technology. Wiley-VCH, Berlin

    Google Scholar 

  2. Pankove JI, Miller EA, Berkeyheiser JE (1971) RCA Rev 32:283

    Google Scholar 

  3. Amano H, Sawaki N, Akasaki I (1986) Appl Phys Lett 48:353

    Article  Google Scholar 

  4. Amano H, Kito M, Hiramatsu K, Akasaki I (1989) Jpn J App Phys 28:L2112

    Article  Google Scholar 

  5. Ponce FA, Bour DP (1997) Nature 386:351

    Article  Google Scholar 

  6. Orton JW, Foxon CT (1998) Rep Prog Phys 61:1

    Article  Google Scholar 

  7. Nakamura S (1999) Semicond Sci Technol 14:R27

    Article  Google Scholar 

  8. Ambacher O (1998) J Appl Phys 31:2653

    Article  Google Scholar 

  9. Meyer M (1997) Compound Semiconductors 8

    Google Scholar 

  10. AIXTRON (1998) September press release: Compound Semiconductors enter the automotive industry

    Google Scholar 

  11. Nakamura S (1998) MRS Bulletin 23(5):37

    Google Scholar 

  12. Denbaars SP (1997) Proc IEEE 65:1740

    Article  Google Scholar 

  13. Nakamura S, Senoh M, Nagahama S, Iwasa N, Yamada T, Matsushita T, Sugimoto Y, Kiyoku Y (1997) Jpn J Appl Phys Lett 36:L1059

    Article  Google Scholar 

  14. Neumayer DA, Ekerdt J (1996) Chem Mater 8:9

    Article  Google Scholar 

  15. Keller S, Denbaars SP (1997) Curr Opin Solid St M 3:45

    Article  Google Scholar 

  16. (1997) GaN and related materials for device application. MRS Bull 22:17

    Google Scholar 

  17. Usui A, Sunakawa H, Sakai A, Yamaguchi A (1997) Jpn J Appl Phys Lett 36:L899

    Article  Google Scholar 

  18. Nakamura S (1994) Jpn J Appl Phys 10A:L1750

    Google Scholar 

  19. Strite S, Morkoc H (1992) J Vacuum Sci Technol B10:1237

    Google Scholar 

  20. Liu S, Stevenson DA (1978) J Electrochem Soc 125:1161

    Google Scholar 

  21. Ambacher O, Bergmaier A, Brandt MS, Dimitrov R, Dollinger G, Fischer RA, Miehr A, Metzger T, Stutzmann M (1996) J Vacuum Sci Technol B14:3532

    Google Scholar 

  22. Monemar B, Lagerstedt O (1979) J Appl Phys 50:6480

    Article  Google Scholar 

  23. Leitner J, Stejskal J (1998) J Mat Sci Lett 35:85

    Google Scholar 

  24. Lu HQ, Thothathiri M, Wu Z, Bhat I (1997) J Electron Mater 26

    Google Scholar 

  25. Shimizu M, Hiratmsu K, Sawaki N (1994) J Cryst Growth 145:209

    Article  Google Scholar 

  26. Bauer J, Kunzer M, Maier K, Kaufmann U, Schneider J (1995) Mater Sci Eng B 29:61

    Article  Google Scholar 

  27. Baur J, Kunzer M, Maier K, Kaufmann U, Schneider J, Amano H, Akasaki T, Detchprom K, Hiramatsu K (1995) Appl Phys Lett 67:1140

    Article  Google Scholar 

  28. Seifert W, Franzheld R, Butter E, Riede V (1983) Cryst Res Technol 18:383

    Google Scholar 

  29. Nakamura S, Mukai T, Senoh M (1992) J Appl Phys 71:5543

    Article  Google Scholar 

  30. Nakamura S, Iwasa N, Mukai T (1992) Jpn J Appl Phys 31:1258;

    Article  Google Scholar 

  31. Götz W, Johnson M, Walker J, Bou DP, Street RA (1996) Appl Phys Lett 68:667

    Article  Google Scholar 

  32. Wetzel C, Volm D, Meyer BK, Pressel K, Nilson S (1994) Appl Phys Lett 65:1033

    Article  Google Scholar 

  33. Lin M, Strite S, Agarwal A, Salvador A, Zhou GL, Rocket A, Morkoc H (1993) Appl Phys Lett 62:702

    Article  Google Scholar 

  34. Powell RC, Lee NE, Kim YM, Greene JE (1993) J Appl Phys 73:189

    Article  Google Scholar 

  35. Kato Y, Kitamura S, Hiramatsu K, Sawaki N (1994) J Cryst Growth 144:133

    Article  Google Scholar 

  36. Rubin M, Newman J, Chan JS, Fu TC, Ross J (1994) Appl Phys Lett 64:64

    Article  Google Scholar 

  37. Beaumont B, Gilbart P, Faurie JP (1995) J Cryst Growth 156:140

    Article  Google Scholar 

  38. Akasaki I, Amano H, Hiramatsu K, Sawaki (1987) Int Conf Ser (Heraklion) Proc Int Symp On GaAs and Related Compounds 633

    Google Scholar 

  39. Jones AC, Auld J, Rushworth SA, Houlton DJ, Critchlow GW (1994) J Mater Chem 4:1591

    Article  Google Scholar 

  40. Edgar JH, Yu ZJ, Ahmed AU, Rys A (1990) Thin Solid Films 189:L11

    Article  Google Scholar 

  41. Nalwa HS (ed) (2002) Handbook of nanostructured materials and nanotechnology. Academic, New York

    Google Scholar 

  42. Lieber CM (2001) Sci Am 285:58

    Google Scholar 

  43. Wu Y, Yan H, Huang M, Messer B, Song JH, Yang P (2002) Chem Eur J 8:1261

    Article  Google Scholar 

  44. Xia Y, Yang P (2003) Adv Mater (Special Issue on Nanowires) 15:351

    Article  Google Scholar 

  45. Han W, Fan S, Li Q, Hu Y (1997) Science 277:1287

    Article  Google Scholar 

  46. Han W, Redlich P, Ernst F, Ruhle M (2002) Appl Phys Lett 76:652

    Article  Google Scholar 

  47. Duan XF, Lieber CM (2000) J Am Chem Soc 122:188

    Article  Google Scholar 

  48. Chen CC, Yeh CC (2000) Adv Mater 12:738

    Article  Google Scholar 

  49. Li JY, Chen XL, Qiao ZY, Cao YG, Lan YC (2000) J Cryst Growth 213:408

    Article  Google Scholar 

  50. Cheng GS, Zhang LD, Zhu Y, Fei GT, Li L (1999) Appl Phys Lett 75:2455

    Article  Google Scholar 

  51. Yoshizawa M, Kikuchi A, Mori M, Fujita N, Kishino K (1997) Jpn J Appl Phys Part 2, 36:L459

    Article  Google Scholar 

  52. He M, Minus L, Zhou P, Mohammed SN, Halpern JB, Jacobs R, Sarney WL, Riba LS, Vispute RD (2000) Appl Phys Lett 77:3731

    Article  Google Scholar 

  53. Edgar JH, Yu ZJ, Ahmed AU, Rys A (1990) Thin Solid Films 189:L11

    Article  Google Scholar 

  54. Demchuk A, Porter J, Koplitz B (1998) J Phys Chem A 102:8841

    Article  Google Scholar 

  55. Atakan B (1998) Phys Status Solidi A 176:719

    Google Scholar 

  56. Gaskill DK, Bottka N, Lin MC (1986) Appl Phys Lett 48:1449

    Article  Google Scholar 

  57. Swye BS, Schlup JR, Edgar JH (1991) Chem Mater 3:737

    Article  Google Scholar 

  58. Swye BS, Schlup JR, Edgar JH, ibid, 1093

    Google Scholar 

  59. Safvi SA, Redwing JM, Tischler MA, Kuech TF (1997) J Electrochem Soc 144:1789

    Google Scholar 

  60. Miyoshi S, Onabe K, Ohkouchi N, Yaguchi H, Ito R, Fukatsu S, Shirak, Yoshida S (1992) J Cryst Growth 124:439

    Article  Google Scholar 

  61. Okumura H, Misawa S, Okahisa T, Yoshida S (1994) J Cryst Growth 136:361

    Article  Google Scholar 

  62. Kuwano N, Nagatomo Y, Kobayashi K, Oki K, Shiraki Y (1994) Jpn J Appl Phys 33:118

    Google Scholar 

  63. Geisz JF, Friedmann DJ (2002) Semicond Sci Tech 17:769

    Article  Google Scholar 

  64. Liu ZJ, Atakan B, Kohse-Höinghaus K (2000) J Cryst Growth 219:176

    Article  Google Scholar 

  65. Beaumont B, Gilbart P, Faurie JP (1995) J Cryst Growth 156:140

    Article  Google Scholar 

  66. Jones AC, Auld J, Rushworth SA, Houlton DJ, Critchlow GW (1994) J Mater Chem 4:1591

    Article  Google Scholar 

  67. Edgar JH, Yu ZJ, Ahmed AU, Rys A (1990) Thin Solid Films 189:L11

    Article  Google Scholar 

  68. Gaskill DK, Bottka N, Lin MC (1986) Appl Phys Lett 48:1449

    Article  Google Scholar 

  69. Miyoshi S, Onabe K, Ohkouchi N, Yaguchi H, Fukatsu S, Shirak, Yoshida S (1992) J Cryst Growth 124:439

    Article  Google Scholar 

  70. Okumura H, Misawa S, Okahisa T, Yoshida S (1994) J Cryst Growth 136:361

    Article  Google Scholar 

  71. Kuwano N, Nagatomo Y, Kobayashi K, Oki K, Shiraki Y (1994) Jpn J Appl Phys 33:118

    Google Scholar 

  72. Tornieporth-Oetting IC, Klapötke TM (1995) Angew Chem 107:559 (and references cited therein)

    Google Scholar 

  73. Chtchekine DG, Fu LP, Gilliland LP, Chen GD, Ralph SE, Bajaj KK, Bu Y, Lin MC, Chen (1995) J Chem Soc 42:423

    Google Scholar 

  74. Jones AC (1997) Chem Soc Rev 101

    Google Scholar 

  75. Sun JX, Redwing JM, Kuech TF (2000) J Elec Mater 29:2

    Google Scholar 

  76. Jensen KF, Rodgers ST, Venkataramani R (1998) Curr Opin Solid St M 3:562

    Article  Google Scholar 

  77. Rodgers ST, Jensen K (1998) J Appl Phys 83:524

    Article  Google Scholar 

  78. Simka H, Willis BG, Lengyel I, Jensen KF (1997) Prog Crystal Growth Character Mater 35:117

    Article  Google Scholar 

  79. Koch W, Holthausen MC (2001) A chemist's guide to density functional theory. Wiley VCH, Weinheim

    Google Scholar 

  80. Timoshkin AY, Bettinger HF, Schaeffer III HF (2001) J Phys Chem A 105:3240

    Article  Google Scholar 

  81. Timoshkin AY, Bettinger HF, Schaeffer III HF (2001) J Phys Chem A 105:3249

    Article  Google Scholar 

  82. Timoshkin AY, Bettinger HF, Schaeffer III HF (2001) J Cryst Growth 222:170

    Article  Google Scholar 

  83. Mihopoulos TG, Gupta V, Jensen KF (1998) J Cryst Growth 195:733

    Article  Google Scholar 

  84. Mihopoulos TG (1998) PhD Thesis, Massachusetts Institute of Technology

    Google Scholar 

  85. Pawlowski R, Theodoropoulos C, Salinger A, Mountziaris T, Moffat H, Shadid J, Thrust E (2000) J Cryst Growth 221:622

    Article  Google Scholar 

  86. Safvi S, Redwing J, Tischler M, Kuech T (1997) J Electrochem Soc 144:1789

    Google Scholar 

  87. Mesic E, Mukinovich M, Brenner G (2005) Comp Mater Sci 31:42

    Google Scholar 

  88. Jacko MG, Price SJW (1963) Can J Chem 41:1560

    Google Scholar 

  89. Oikawa S, Tsuda M, Morishita M, Mashita M, Kuniya Y (1998) J Cryst Growth 91:471

    Article  Google Scholar 

  90. Allendorf MD, Melius CF, Bauschlicher CW Jr (1999) J Phys IV France 9:8

    Google Scholar 

  91. McDaniel AH, Allendorf MD (2000) Chem Mater 12:450

    Article  Google Scholar 

  92. Schmid R, Basting D (2005) J Phys Chem A 109:2623

    Article  Google Scholar 

  93. Pelekh A, Carr RW (2001) J Phys Chem A 105:4697

    Article  Google Scholar 

  94. Watwe RM, Dumesic JA, Kuech TF (2000) J Cryst Growth 221:751

    Article  Google Scholar 

  95. Sengupta D (2003) J Phys Chem B 107:291

    Article  Google Scholar 

  96. Koleske DD, Wickenden AE, Henry RL, Culbertson JC, Twigg ME (2001) J Cryst Growth 223:466

    Article  Google Scholar 

  97. Neugebauer J (2001) Phys Status Solidi B 227:93

    Article  Google Scholar 

  98. Srivastava GP (1997) Rep Prog Phys 60:561

    Article  Google Scholar 

  99. Willis BG, Jensen KF (2001) Surf Science 488:286

    Article  Google Scholar 

  100. Willis BG, Jensen KF (2001) Surf Science 488:303

    Article  Google Scholar 

  101. Cowley AH, Jones RA (1989) Angew Chem 101:1235

    Google Scholar 

  102. Fischer RA, Scherer W, Kleine M (1993) Angew Chem 105:778;

    Google Scholar 

  103. Fischer RA, Kleine M (1995) Chem Mater 7:1863

    Article  Google Scholar 

  104. Fischer RA, Miehr A (1996) Chem Mater 8:497

    Article  Google Scholar 

  105. Brien PO (1992) In: Bruce DW, O'Hare D (eds) Inorganic materials. Wiley, New York, Ch 9, p 492

    Google Scholar 

  106. Hampden-Smith MJ, Kodas TT (eds) (1994) In: The chemistry of metal. CVD, Verlag Chemie, Weinheim

    Google Scholar 

  107. Fischer RA (1995) Chemie Unserer Zeit 29:141

    Article  Google Scholar 

  108. Cowley AH, Jones RA (1994) Polyhedron 13:1149

    Article  Google Scholar 

  109. Jones AC, Brien PO (1996) Compound semiconductors. CVD

    Google Scholar 

  110. Cowley AH, Jones RA (1989) Angew Chem Int Edit 28:1208

    Article  Google Scholar 

  111. Jones AC, Whitehouse C, Roberts JS (1995) Chem Vap Depos 1:65

    Article  Google Scholar 

  112. Getman TD, Franklin GW (1995) Comments Inorg Chem 17:79

    Google Scholar 

  113. Park HS, Waezsada SD, Cowley AH, Roesky HW (1998) Chem Mater 10:2251

    Article  Google Scholar 

  114. Hoffman DM, Rangarajan SP, Athavale SD, Economou DJ, Liu JR, Zheng Z, Chu WK (1996) J Vacuum Sci Technol A 14:306

    Article  Google Scholar 

  115. Linnen CJ, Macks DE, Coombe RD (1997) J Phys Chem B 101:1602;

    Article  Google Scholar 

  116. Linnen CJ, Coombe RD (1998) Appl Phys Lett 72:88

    Article  Google Scholar 

  117. Bock H, Dammel R (1987) Angew Chem 99:518 (and references cited therein)

    Google Scholar 

  118. Liu SS, Stevenson DA (1978) J Electrochem Soc 125:1161

    Google Scholar 

  119. Wiberg E, Michaud HZ (1954) Naturforsch B9:495

    Google Scholar 

  120. Kouvetakis J, Beach D (1989) Chem Mater 1:476

    Article  Google Scholar 

  121. Boyd DC, Haasch RT, Mantell DR, Schulze RK, Evans JF, Gladfelter WL (1989) Chem Mater 1:119

    Article  Google Scholar 

  122. Lakhotia V, Neumayer DA, Cowley AH, Jones RA, Ekerdt JG (1995) Chem Mater 7:546

    Article  Google Scholar 

  123. Neumayer DA, Cowley AH, Decken A, Jones RA, Lakhotia V, Ekerdt JG (1995) J Am Chem Soc 117:5893

    Article  Google Scholar 

  124. McMurran J, Todd M, Kouvetakis J, Smith DJ (1996) Appl Phys Lett 69:203

    Article  Google Scholar 

  125. Kouvetakis J, McMurran J, Matsunga P, O'Keeffe M, Hubbard JL (1997) Inorg Chem 36:1792

    Article  PubMed  Google Scholar 

  126. McMurran J, Kouvetakis J, Smith DJ (1999) Appl Phys Lett 74:883

    Article  Google Scholar 

  127. Miehr A, Ambacher O, Metzger T, Born E, Fischer RA (1996) Chem Vap Depos 2:51

    Article  Google Scholar 

  128. Miehr A, Mattner MR, Fischer RA (1996) Organometallics 15:2053

    Article  Google Scholar 

  129. Fischer RA, Miehr A, Herdtweck E, Mattner MR, Ambacher O, Metzger T, Born E, Weinkauf S, Pulham CR, Parsons S (1996) Chem Eur J 2:101

    Google Scholar 

  130. Miehr A, Ambacher O, Metzger T, Born E, Fischer RA (1996) J Cryst Growth 170:139

    Google Scholar 

  131. Fischer RA, Miehr A, Sussek H, Pritzkow H, Herdtweck E, Müller J, Ambacher O, Metzger T (1996) Chem Commun 2685

    Google Scholar 

  132. Fischer RA, Miehr A, Metzger T, Born E, Ambacher O, Angerer H, Dimitrov R (1996) Chem Mater 8:1356

    Article  Google Scholar 

  133. Fischer RA, Frank AC, Stowasser F, Stark O, Kwak HT, Sussek H, Rupp A, Prtizkow H, Ambacher O, Geirsig M (1998) Adv Mater Opt Electr 8:135

    Google Scholar 

  134. Frank AC, Stowasser F, Sussek H, Pritzkow H, Miskys CR, Ambacher O, Giersig M, Fischer RA (1998) J Am Chem Soc 120:3512

    Article  Google Scholar 

  135. Frank AC, Stowasser F, Miskys CR, Ambacher O, Giersig M, Fischer RA (1998) J Am Chem Soc 165:239

    Google Scholar 

  136. Devi A, Rogge W, Wohlfart A, Hipler F, Becker HW, Fischer RA (2000) Chem Vap Depos 6:245

    Article  Google Scholar 

  137. Schäfer J, Wolfrum J, Fischer RA, Sussek H (1999) Chem Phys Lett 300:152

    Article  Google Scholar 

  138. Müller J, Wittig B (1998) Eur J Inorg Chem 1807

    Google Scholar 

  139. Müller J, Sternkicker H (1999) J Chem Soc Dalton T 4149

    Google Scholar 

  140. Müller J, Sternkicker H, Bergmann U, Atakan B (2000) J Phys Chem A 104:3627

    Article  Google Scholar 

  141. Müller J, Bendix S (2001) Chem Commun 911

    Google Scholar 

  142. Müller J, Wittig B, Bendix S (2001) J Phys Chem A 105:2112

    Article  Google Scholar 

  143. Müller J, Wittig B (2001) Electrochem Soc Proc 13:124

    Google Scholar 

  144. Norman I, Pimentel GC (1954) Nature 174:508

    Google Scholar 

  145. Whittle E, Dows DA, Pimentel GC (1954) J Chem Phys 22:1943

    Google Scholar 

  146. Dunkin IR (1998) Matrix-isolation techniques. Oxford University Press, Oxford

    Google Scholar 

  147. Müller J, Wittig B, Sternkicker H, Bendix S (2001) J Phys IV 11:17

    Google Scholar 

  148. Schmid R, Wolbank B, Basting D (2003) Electrochem Soc Proc 212:39

    Google Scholar 

  149. Wolbank B, Schmid R (2003) Chem Vap Depos 9:272

    Article  Google Scholar 

  150. Schaefer J, Wolfrum J, Fischer RA, Sussek H (1999) Chem Vap Depos 5:205

    Article  Google Scholar 

  151. Jones AC, Rushworth SA, Houlton DJ, Roberts JS, Roberts V, Whitehouse CR, Critchlow GW (1996) Chem Vap Depos 2:5

    Article  Google Scholar 

  152. Miehr A, Ambacher O, Rieger W, Metzger T, Born E, Fischer RA (1996) Chem Vap Depos 2:51

    Article  Google Scholar 

  153. Micic OI, Ahrenkiel SP, Bertram D, Nozik AJ (1999) Appl Phys Lett 75:478

    Article  Google Scholar 

  154. Frank AC, Fischer RA (1998) Adv Mater 10:961

    Article  Google Scholar 

  155. McMurran J, Kouvetakis J, Nesting DC, Smith DJ, Hubbard JL (1998) J Am Chem Soc 120:5233

    Article  Google Scholar 

  156. Manz A (2000) PhD Thesis, Ruhr-University Bochum, Germany

    Google Scholar 

  157. Wohlfart A, Devi A, Maile E, Fischer RA (2002) Chem Commun 998

    Google Scholar 

  158. Khanderi J, Wohlfart A, Parala H, Devi A, Hambrock J, Birkner A, Fischer RA (2003) J Mater Chem 13:1438

    Article  Google Scholar 

  159. Fischer RA, Miehr A, Metzger T, Born E, Ambacher O, Angerer H, Dimitrov R (1996) Chem Mater 8:1356

    Article  Google Scholar 

  160. Zhang L, Zhang X, Peng X, Wang X (2002) J Mater Chem 12:802

    Article  Google Scholar 

  161. Liang CH, Chen LC, Hwang JS, Chen KH, Hung YT, Chen YF (2002) Appl Phys Lett 81:22

    Article  Google Scholar 

  162. Parala H, Devi A, Hipler F, Maile E, Birkner A, Becker HW, Fischer RA (2001) J Cryst Growth 231:68

    Article  Google Scholar 

  163. Wagner RS, Ellis WC (1964) Appl Phys Lett 4:89

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland A. Fischer .

Editor information

Roland A. Fischer

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Devi, A., Schmid, R., Müller, J., Fischer, R.A. Materials Chemistry of Group 13 Nitrides. In: Fischer, R.A. (eds) Precursor Chemistry of Advanced Materials. Topics in Organometallic Chemistry, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b136142

Download citation

Publish with us

Policies and ethics