Skip to main content

Gas-Phase Thermochemistry and Mechanism of Organometallic Tin Oxide CVD Precursors

  • Chapter
  • First Online:

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 9))

Abstract

Organometallic compounds are commonly used precursors for the formation of tin oxide films by chemical vapor deposition (CVD) methods. The high temperatures (600–700°C) used in CVD lead to chemical reactions in the gas phase that in some cases control the deposition process. Lack of data concerning both the thermochemistry and kinetics of these reactions inhibits the development of predictive models that can be used for process optimization. In this article, we review recent work in which a combination of experimental and theoretical methods are used to develop elementary reaction mechanisms for the pyrolysis, oxidation, and hydrolysis of organometallic tin compounds. A major focus of our work in this field is the development of quantum-chemistry methods that can predict heats of formation for a broad range of tin compounds. In addition to providing data needed to calculate bond energies, reaction enthalpies, and to perform equilibrium calculations, the calculations identified several complexes between chlorides of tin with water that may be key intermediates in the hydrolysis of chlorinated organotin precursors during CVD. Based on the data from the ab initio and equilibrium calculations, a reaction pathway analysis has been carried out for the oxidation and hydrolysis of dimethyltin dichloride and monobutyltin trichloride. Possible reaction pathways leading to tin hydroxides are identified, which equilibrium calculations show to be the most stable tin-containing gas-phase species under typical deposition conditions.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lindner GH (1988) US Patent 4737388

    Google Scholar 

  2. Gerhardinger PF, McCurdy RJ (1996) Mat Res Soc Symp Proc 426:399

    Google Scholar 

  3. Neumann GA, Stewart-Davis RL (1996) US Patent 5395698

    Google Scholar 

  4. Soubeyrand MJ, Halliwell AC (1997) US Patent 5698262

    Google Scholar 

  5. Athey PR, Dauson DS, Lecocq DE, Neuman GA, Sopko JF, Stewart-Davie RL (1997) US Patent 5464657

    Google Scholar 

  6. Goodman RD, Greenberg WM, Tausch PJ (1989) US Patent 4847157

    Google Scholar 

  7. Henry VA (1989) US Patent 4853257

    Google Scholar 

  8. Middleton DJ, Grenier JI (1985) US Patent 4548836

    Google Scholar 

  9. Gordon RG, Proscia J, Ellis Jr FB, Delahoy AE (1989) Sol Energy Mater 18:263

    Article  Google Scholar 

  10. Plattner R, Stetter W, Kohler P (1988) Siemens Forsch- Entwick -Ber 17(3):138

    Google Scholar 

  11. Boiko BT, Kopach GI, Klochko NP, Kopach VR, Khripunov GS, Chernikov AI (1990) Appl Solar Energy 26:40

    Google Scholar 

  12. Greenwald A, Bragagnolo J, Leonard M (1987) 19th IEEE Photovoltaic Spec Conf, p 621

    Google Scholar 

  13. Saxena AK, Singh SP, Agnihotri OP (1986) Sol Cells 19:163

    Article  Google Scholar 

  14. Sato K, Gotoh Y, Hayashi Y, Adachi K, Nishimura H (1990) Reports Res Lab Asahi Glass Co Ltd 40(2):233

    Google Scholar 

  15. Singh K, Tamakloe RY (1996) Sol Energy 56:343

    Article  Google Scholar 

  16. Berger F, Beche E, Berjoan R, Klein D, Chambaudet A (1996) Appl Surf Sci 93:9

    Article  Google Scholar 

  17. Brown JR, Cheney MT, Haycock PW, Houlton DJ, Jones AC, Williams EW (1997) J Electrochem Soc 144:295

    Google Scholar 

  18. Dimeo F Jr, Semancik S, Cavicchi RE, Suehle JS, Chaparala P, Tea NH (1996) Mater Res Soc Symp Proc 415:231

    Google Scholar 

  19. Kim KH, Park CG (1991) J Electrochem Soc 138:2408

    Google Scholar 

  20. Clough TJ, Grosvenor VL, Pinsky N (1994) US Patent 5317132

    Google Scholar 

  21. Mukherjee A (1990) US Patent 4959257

    Google Scholar 

  22. Tong H, Hu C, Hsu M (1997) US Patent 5652477

    Google Scholar 

  23. Cahill JW (1994) US Patent 5284705

    Google Scholar 

  24. Houng KH (1982) Bull Inst Chem Acad Sin 29:19

    Google Scholar 

  25. Gazdag R, Seyfried E, Ligeti Z (1981) Liq Cryst Res Appl, Proc 3rd Liq Cryst Conf Soc Countries 2:1137

    Google Scholar 

  26. Kane J, Ling M (1988) US Patent 4728581

    Google Scholar 

  27. Nakagawa M, Amano T, Yokokura S (1997) J Non-Cryst Sol 218:100

    Article  Google Scholar 

  28. McCurdy RJ (1999) Thin Sol Films 351:66

    Article  Google Scholar 

  29. Rees WS Jr (ed) (1996) CVD of Nonmetals. VCH, Weinheim

    Google Scholar 

  30. Adachi K, Mizuhashi M (1987) In: Cullen W (ed) Proc 10th Int Symp Chem Vapor Dep, vol PV87-8. The Electrochemical Soc Proc Series, Pennington, PA, p 999

    Google Scholar 

  31. Giunta CJ, Strickler DA, Gordon RG (1993) J Phys Chem 97:2275

    Article  Google Scholar 

  32. Ghoshtagore RN (1977) In: Donaghey LF, Rai-Choudhury P, Tauber RN (eds) Proc 6th Int Symp Chem Vapor Dep, vol PV77-5. The Electrochemical Soc Proc Series, Pennington, PA, p 433

    Google Scholar 

  33. Ghoshtagore RN (1978) J Electrochem Soc 125:110

    Google Scholar 

  34. Sanders H (1997) In: Allendorf MD, Bernard C (eds) Proc 14th Int Symp Chem Vapor Dep, vol PV97-25. The Electrochemical Society Proc Series (Pennington, NJ), Pennington, PA, p 81

    Google Scholar 

  35. Buchanan JL, McKown C (1997) J Non-Cryst Sol 218:179

    Article  Google Scholar 

  36. Lee S-M, Kim D-L, Youn H-J, Hong KS (2000) Japan J Appl Phys 39:407

    Article  Google Scholar 

  37. Hitchman ML, Jensen KF (eds) (1993) Chemical Vapor Deposition. Academic, London

    Google Scholar 

  38. Allendorf MD (2001) Thin Sol Films 392:155

    Article  Google Scholar 

  39. Borman CG, Gordon RG (1989) J Electrochem Soc 136:3820

    Google Scholar 

  40. Zawadzki AG, Giuna CJ, Gordon RG (1992) J Phys Chem 96:5364

    Article  Google Scholar 

  41. Simoes JAM, Liebman JF, Slayden SW (1995) In: Patai S (ed) The Chemistry of Organic Germanium, Tin, and Lead Compounds. Wiley, New York, p 245

    Google Scholar 

  42. Gurvich LV, Veyts IV, Alcock CB (1994) Thermodynamic Properties of Individual Substances. CRC Press, Boca Raton, FL

    Google Scholar 

  43. Nicklass A, Stoll H (1995) Mol Phys 86:317

    Google Scholar 

  44. Smart BA, Griffiths LE, Pulham CR, Robertson HE, Mitzel NW, Rankin DWH (1997) JCS Dalton Trans 1997:1565

    Article  Google Scholar 

  45. Kaupp M, Metz B, Stoll H (2000) Angew Chem Int Ed 39:4607

    Article  Google Scholar 

  46. Basch H (1996) Inorganica Chim Acta 252:265

    Article  Google Scholar 

  47. Buntine MA, Kosovel FJ, Tiekink ERT (1999) Phosphorous Sulfur Silicon 150:261

    Google Scholar 

  48. LaJohn LA, Christiansen PA, Ross RB, Atashroo T, Ermler WC (1987) J Chem Phys 87:2812

    Article  Google Scholar 

  49. Nielsen IMB, Janssen CL, Allendorf MD (2002) J Phys Chem A 107:5122

    Article  Google Scholar 

  50. Takahashi, Roth PN (2000) J Phys Chem A 104:5246

    Article  Google Scholar 

  51. Johnson RP, Price SJW (1972) Can J Chem 50:50

    Google Scholar 

  52. Price SJW, Trotman-Dickenson AF (1958) Trans Faraday Soc 54:1630

    Article  Google Scholar 

  53. McDaniel AH, Allendorf MD (2000) Mat Chem 12:450

    Article  Google Scholar 

  54. Chow TP, Ghezza M, Baliga BJ (1982) J Electrochem Soc 129:1040

    Google Scholar 

  55. Vetrone J, Chung YW (1991) J Vac Sci Technol A 9:3641

    Article  Google Scholar 

  56. Aleksandrov YA, Baryshnikov YY, Zakharov IL, Lazareva TI (1990) Kinetika Kataliz 31:727

    Google Scholar 

  57. Harrison PG, Ashworth A, Clark EN, McManus J (1990) J Chem Soc Faraday Trans 86:4059

    Article  Google Scholar 

  58. Fuller MJ, Warwic ME (1973) J Catal 29:441

    Article  Google Scholar 

  59. Glassman I (1996) Combustion. Academic, San Diego, CA

    Google Scholar 

  60. Petersen EL, Davidson DF, Hanson RK (1999) Comb Flame 117:272

    Article  Google Scholar 

  61. Available at www.me.berkeley.edu/gri_mech

    Google Scholar 

  62. Pope CJ, Miller JA (2000) Proc Combust Inst 28:1479

    Google Scholar 

  63. Marinov NM, Pitz WJ, Westbrook CK, Vincitore AM, Castaldi MJ, Senkan SM, Melius CF (1998) Combust Flame 114:192

    Article  Google Scholar 

  64. Strickler DA (1989) PhD thesis, Harvard University

    Google Scholar 

  65. Chae Y, Houf WG, McDaniel AH, Allendorf MD (2004) J Electrochem Soc 151:527

    Article  Google Scholar 

  66. van Mol AMB, Allendorf MD (2003) In: Allendorf MD, Maury F, Teyssandier F (eds) 16th Int Symp Chem Vapor Dep=EUROCVD-14, vol 2003-08. The Electrochemical Society Proceedings Series, Pennington, PA, p 65

    Google Scholar 

  67. Melius CF, Allendorf MD, Colvin ME (1997) In: Bernard C, Allendorf MD (eds) Fourteenth Int Symp Chem Vapor Deposition, vol 97–25. The Electrochemical Society Proceedings Series, Pennington, PA, p 1

    Google Scholar 

  68. Hehre WJ, Radom L, Schleyer PvR, Pople JA (1986) Ab initio Molecular Orbital Theory. Wiley, New York

    Google Scholar 

  69. Curtiss LA, Raghavachari K, Trucks GW, Pople JA (1991) J Chem Phys 94:7221

    Article  Google Scholar 

  70. Curtiss LA, Raghavachari K, Redfern PC, Rassolov V, Pople JA (1998) J Chem Phys 109:7764

    Article  Google Scholar 

  71. Ochterski JW, Petersson GA, Montgomery JA (1996) J Chem Phys 104:2598

    Article  Google Scholar 

  72. Ho P, Melius CF (1990) J Phys Chem 94:5120

    Article  Google Scholar 

  73. Melius CF (1990) In: Bulusu SN (ed) Chemistry and Physics of Energetic Materials (NATO ASI Series), vol 309. Kluwer, Dordrecht, p 21

    Google Scholar 

  74. Melius CF, Allendorf MD (2000) J Phys Chem 104:2168

    Google Scholar 

  75. Allendorf MD, Melius CF (1997) J Phys Chem A 101:2670

    Article  Google Scholar 

  76. Allendorf MD, Melius CF, Bauschlicher C Jr (1999) J Phys Fr IV 9:23

    Google Scholar 

  77. Zachariah MR, Westmoreland PR, Burgess DR, Tsang W (1996) J Phys Chem 100:8737

    Article  Google Scholar 

  78. Allendorf MD, Melius CF, Cosic B, Fontijn A (2001) J Phys Chem A 106:2629

    Article  Google Scholar 

  79. Allendorf MD, Melius CF (1992) J Phys Chem 96:428

    Article  Google Scholar 

  80. Allendorf MD, Melius CF (1993) J Phys Chem 97:720

    Article  Google Scholar 

  81. Allendorf MD, Melius CF, Ho P, Zachariah MR (1995) J Phys Chem 99:15285

    Article  Google Scholar 

  82. Ho P, Coltrin ME, Binkley JS, Melius CF (1985) J Phys Chem 89:4647

    Article  Google Scholar 

  83. Ho P, Coltrin ME, Binkley JS, Melius CF (1986) J Phys Chem 90:3399

    Article  Google Scholar 

  84. Ho P, Breiland WG, Carr RW (1986) Chem Phys Lett 132:422

    Article  Google Scholar 

  85. Ho P, Melius CF (1995) J Phys Chem 99:2166

    Article  Google Scholar 

  86. Melius CF, Ho P (1991) J Phys Chem 95:1410

    Article  Google Scholar 

  87. Cramer CJ (2003) Essentials of Computational Chemistry. Wiley, Chichester

    Google Scholar 

  88. Allendorf MD, Melius CF (2004) J Phys Chem A 109:4939

    Article  Google Scholar 

  89. Frisch MJ, Trucks GW, Schlegel HB, Gill PMW, Johnson BG, Robb MA, Cheeseman JR, T Keith, Petersson GA, Montgomery JA, Raghavachari K, Al-Laham MA, Zakrzewski VG, Ortiz JV, Foresman JB, Cioslowski J, Stefanov BB, Nanayakkara A, Challacombe M, Peng CY, Ayala PY, Chen W, Wong MW, Andres JL, Replogle ES, Gomperts R, Martin RL, Fox DJ, Binkley JS, Defrees DJ, Baker J, Stewart JP, Head-Gordon M, Gonzalez C, Pople JA (1998) Gaussian 98. Gaussian, Pittsburgh, PA

    Google Scholar 

  90. Scott AP, Radom L (1996) J Phys Chem 100:16502

    Article  Google Scholar 

  91. Allendorf MD, Melius CF, http://www.ca.sandia.gov/HiTempThermo/index.html

  92. Cox JD, Pilcher G (1970) Thermochemistry of Organic and Organometallic Compounds. Academic, London

    Google Scholar 

  93. Walsh R (1981) Acc Chem Res 14:246

    Article  Google Scholar 

  94. Nash GA, Skinner HA, Stack WF (1965) Faraday Soc London Trans 61:640

    Article  Google Scholar 

  95. Gilbert RG, Smith SC (1990) Theory of Unimolecular and Recombination Reactions. Blackwell, Oxford

    Google Scholar 

  96. Basch H, Hoz T (1995) In: Patai S (ed) The Chemistry of Organic Gemanium, Tin, and Lead Compounds. Wiley, New York, p 1

    Google Scholar 

  97. Ignatyev IS, Schaeffer III HF (2001) J Phys Chem A 105:7665

    Article  Google Scholar 

  98. Hurst SJ, Kirkbride BJ, Sheel DW (1997) Great Britain Patent EP0755902A2

    Google Scholar 

  99. Mackay KM (1995) In: Patai S (ed) The chemistry of organic germanium, tin and lead compounds

    Google Scholar 

  100. Kee RJ, Rupley FM, Miller JA, Coltrin ME, Grcar JF, Meeks E, Moffat HK, Lutz AE, Dixon-Lewis G, Smooke MD, Warnatz J, Evans GH, Larson RS, Mitchell RE, Petzold LR, Reynolds WC, Caracotsios M, Stewart WE, Glarborg P, Wang C, Adignun O (2000) Reaction Design, San Diego, CA

    Google Scholar 

  101. van Mol AMB, Alcott GR, de Croon MHJM, Spee CIMA, Schouten JC (2000) In: Allendorf MD, Hitchman ML (eds) Proc Fifteenth Int Symp Chem Vapor Dep, vol 2000-13. The Electrochemical Society Proceedings Series, Pennington, NJ, p 765

    Google Scholar 

  102. van Mol AMB, de Croon MHJM, Spee CIMA, Schouten JC (1999) J Phys IV France 9:PR8

    Google Scholar 

  103. Knyazev VD, Dubinsky IA, Slagle IR, Gutman D (1994) J Phys Chem 98:5279

    Article  Google Scholar 

  104. Allendorf MD, McDaniel AH, van Mol AMB (2002) In: Klages C-P, Gläser HJ, Aegerter MA (eds) 4th Int Conf Coatings on Glass, Braunschweig, Germany, p 195

    Google Scholar 

  105. Chase MW, Davies CA, Downey JR, Frurip DJ, McDonald RA, Szverud AN (1985) J Phys Chem Ref Data 1985:14

    Google Scholar 

  106. Baldwin JC, Lappert MF, Pedley JP, Poland JS (1972) JCS Dalton Trans 1972:1943

    Article  Google Scholar 

  107. Gmelin L (1975) Gmelin Handbook of inorganic and organometallic chemistry. System number 46. Sn–Organotin compounds. Springer, Berlin Heidelberg New York

    Google Scholar 

  108. Spalding TR (1973) J Organomet Chem 55:C65

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark D. Allendorf .

Editor information

Roland A. Fischer

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Allendorf, M.D., van Mol, A.M.B. Gas-Phase Thermochemistry and Mechanism of Organometallic Tin Oxide CVD Precursors . In: Fischer, R.A. (eds) Precursor Chemistry of Advanced Materials. Topics in Organometallic Chemistry, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b136141

Download citation

Publish with us

Policies and ethics