Skip to main content

Assessing and Managing Environmental Risks Associated with Marine Finfish Aquaculture

  • Chapter
  • First Online:
Environmental Effects of Marine Finfish Aquaculture

Part of the book series: Handbook of Environmental Chemistry ((HEC5,volume 5M))

Abstract

Environmental Risk Analysis (ERA) consisting of risk assessment, management and communication can be applied to assess ecological and environmental changes associated with industrial-scale marine finfish aquaculture development. Physical, chemical, and biological variables are identified that may be used to detect thresholds for changes in ecosystem structure and function in order to apply ERA. Changes due to predictable or unpredictable effects may be local or far field. Predictable effects such as reduced dissolved oxygen, increased nutrients and organic matter, or lower diversity of benthic fauna in the vicinity of net-pens can be modeled to quantify local impacts on water column and sediment variables. Far-field and long-term risks such as interactions of escapees with natural stocks and effects of fishing to obtain food for cultured fish are more difficult to predict and quantify. Despite this, scoring methods using single or multiple indicators may be applied to determine the degree of risk associated with all identified potentially negative effects. ERA should be part of an integrated planning approach where aquaculture development occurs within a broad framework to include all development and user groups within the coastal zone. Environmental observations and models can then be combined with effective aquaculture husbandry practices to manage environmental risks from all sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stephen C (2001) ICES J Mar Sci 58:374

    Article  Google Scholar 

  2. Noakes DJ, Fang L, Hipel KW, Kilgour DM (2003) Fish Manag Ecol 10:123

    Google Scholar 

  3. Naylor RL, Goldburg RJ, Primavera JH, Kautsky N, Beveridge MCM, Clay J, Folke C, Lubchenco J, Mooney H, Troell M (2000) Nature 6790:1017

    Google Scholar 

  4. Stewart JE (2001) Bull Aquacul Assoc Canada 101:42

    Google Scholar 

  5. Jentoft S (2000) Ocean & Coastal Manag 43:527

    Google Scholar 

  6. Haya K, Burridge LE, Davies IM, Ervik A (2005) A review and assessment of environmental risk of chemicals used for the treatment of sea lice infestations of cultured salmon (in this volume). Springer, Berlin Heidelberg New York

    Google Scholar 

  7. Read P, Fernandes T (2003) Aquaculture 226:139

    Article  CAS  Google Scholar 

  8. Parsons LS, Powles H, Comfort MJ (1998) Ocean & Coastal Manag 39:151

    Google Scholar 

  9. Stewart JE (2005) Environmental management and the use of sentinel species (in this volume). Springer, Berlin Heidelberg New York

    Google Scholar 

  10. Fitzgerald S, Pederson J (2001) In: Coastal GeoTools '01. Proc 2nd biennial coastal geotools conf. NOAA Charleston, SC

    Google Scholar 

  11. Silvert W (1994) Ecol Modelling 75/76:609

    Article  Google Scholar 

  12. Hargrave BT (2002) Ocean & Coastal Manag 45:215

    Google Scholar 

  13. Sowles JW, Churchill L, Silvert W (1994) In: Hargrave BT (ed) Modelling benthic impacts of organic enrichment from marine aquaculture. Can Tech Rep Fish Aquat Sci 1949:125

    Google Scholar 

  14. Cromey CJ, Nickell TD, Black KD (2002) Aquaculture 214:211

    Article  Google Scholar 

  15. Cromey CJ, Black KD (2005) Modelling the impacts of finfish aquaculture (in this volume). Springer, Berlin Heidelberg New York

    Google Scholar 

  16. Holmer M, Wildish DJ, Hargrave BT (2005) Organic enrichment from marine finfish aquaculture and effects on sediment processes (in this volume). Springer, Berlin Heidelberg New York

    Google Scholar 

  17. Wildish DJ, Pohle GW (2005) Benthic macrofaunal changes resulting from mariculture (in this volume). Springer, Berlin Heidelberg New York

    Google Scholar 

  18. Schaanning MT, Kupka-Hansen P (2005) The suitability of simple electrode measurements for assessment of benthic organic impact and their use in a management system for marine fish farms (in this volume). Springer, Berlin Heidelberg New York

    Google Scholar 

  19. Nordvarg L, Håkanson L (2002) Aquaculture 206:217

    Article  Google Scholar 

  20. Kremer JN, Nixon SW (1978) Coastal marine ecosystem, simulation and analysis. Ecol Studies 24. Springer, Berlin Heidelberg New York

    Google Scholar 

  21. Solomon KR, Sibley P (2002) Mar Poll Bull 44:279

    CAS  Google Scholar 

  22. Fabbri KP (1998) Ocean & Coastal Manag 39:51

    Google Scholar 

  23. Kitsiou D, Coccossis H, Karydis M (2002) Sci Total Environ 284:1

    CAS  Google Scholar 

  24. US Environmental Protection Agency (1998) Federal Register 63:26846

    Google Scholar 

  25. Asante-Duah DK (1998) Risk assessment in environmental management: a guide for managing chemical contamination problems. Wiley, Chichester

    Google Scholar 

  26. Silvert W (2001) In: Tlusty MF, Bengston DA, Halvorson HO, Oktay SD, Pearce JB, Rheault RB (eds) Marine aquaculture and the environment: a meeting for stakeholders in the northeast. Cape Cod Press, Falmouth, MA

    Google Scholar 

  27. Rice J (2003) Ocean & Coastal Manag 46:235

    Google Scholar 

  28. Caddy JF, Mahon R (1995) Fish Tech Paper No 347. FAO, Rome, p 83

    Google Scholar 

  29. Caddy JF (1999) NAFO Sci Coun Studies 32:55

    Google Scholar 

  30. Koeller PA, Savard L, Parsons DG, Fu C (2000) J Northw Atl Fish Sci 27:235

    Google Scholar 

  31. Halliday RG, Fanning LP, Mohn RK (2001) Can Sci Adv Sect Res Doc 2001/108, Ottawa, p 41

    Google Scholar 

  32. GESAMP (IMO/FAO/Unesco/WMO/WHO/IAEA/UN/UNEP Joint Group of Experts on the Scientific Aspects of Marine Pollution) (1991) Rep Stud GESAMP No 47. FAO, Rome, p 35

    Google Scholar 

  33. GESAMP (IMO/FAO/Unesco/WMO/WHO/IAEA/UN/UNEP Joint Group of Experts on the Scientific Aspects of Marine Pollution) (1996) Rep Stud GESAMP No 57. FAO, Rome, p 38

    Google Scholar 

  34. GESAMP (IMO/FAO/Unesco/WMO/WHO/IAEA/UN/UNEP Joint Group of Experts on the Scientific Aspects of Marine Protection) (2001) Rep Stud GESAMP No 68. FAO, Rome, p 90

    Google Scholar 

  35. Black KD (ed) (2001) Environmental impacts of aquaculture. Sheffield Academic Press, Sheffield, UK, p 220

    Google Scholar 

  36. Strain PM, Hargrave BT (2005) Salmon aquaculture, nutrient fluxes and ecosystem processes in southwestern New Brunswick (in this volume). Springer, Berlin Heidelberg New York

    Google Scholar 

  37. Sowles J (2005) Assessing nitrogen carrying capacity for Blue Hill Bay, Maine – a management case history (in this volume). Springer, Berlin Heidelberg New York

    Google Scholar 

  38. Wildish DJ, Hargrave BT, MacLeod C, Crawford C (2003) J Exp Biol Ecol 285–286:403

    Google Scholar 

  39. Anderson MR, Tlusty MF, Pepper VA (2005) Organic enrichment at cold water aquaculture sites–-the case of coastal Newfoundland (in this volume). Springer, Berlin Heidelberg New York

    Google Scholar 

  40. Vandermeulen H (1998) Ocean & Coastal Manag 39:63

    Google Scholar 

  41. Brown K, Adger WN, Tompkins E, Bacon P, Shim D, Young K (2001) Ecol Econ 37:417

    Article  Google Scholar 

  42. Mackinson S, Vasconcellos M, Newlands N (1999) Can J Fish Aquat Sci 56:686

    Article  Google Scholar 

  43. Silvert W (2000) Ecol Modelling 130:111

    Article  CAS  Google Scholar 

  44. Saaty TL (1980) The analytic hierarchy process. McGraw Hill, New York, reprinted RWS Publications, Pittsburg, 1996, p 195

    Google Scholar 

  45. Forman EH, Selly MA (2001) Decision by objectives. World Scientific, New Jersey, p 402

    Google Scholar 

  46. Veitola K, Kettunen J, Maekinen T (1995) ICES-CM-1995/R, p 5

    Google Scholar 

  47. Yeats PA, Milligan TG, Sutherland TF, Robinson SMC, Smith JA, Lawton P, Levings CD (2005) Lithium normalized zinc and copper concentrations in sediments as measures of trace metal enrichment due to salmon aquaculture (in this volume). Springer, Berlin Heidelberg New York

    Google Scholar 

  48. Ferson S (1996) Human and Ecol Risk Ass 2:990

    Google Scholar 

  49. Silvert W (ed) (2003) EU Project No Q5RS-2001-01685. Dove Mar Lab Univ Newcastle, Newcastle, UK

    Google Scholar 

  50. Silvert W, Cromey CJ (2001) In: Black KD (ed) Environmental impacts of aquaculture. Sheffield Academic Press, Sheffield, UK, p 154

    Google Scholar 

  51. Stewart JE, Penning-Rowsell EC, Thornton S (1993) In: Coastal zone management selected case studies. OECD, Paris p 259

    Google Scholar 

  52. Ervik A, Hansen PK, Aure J, Stigebrandt A, Johannessen P, Jahnsen T (1997) Aquaculture 158:85

    Article  Google Scholar 

  53. Jamieson G, O'Boyle R, Arbour J, Cobb D, Courtney S, Gregory R, Levings C, Munro J, Perry I, Vandermeulen H (2001) Proc of the national workshop on objectives and indicators for ecosystem-based management. Can Sci Adv Sect Proc Ser 2001/09, Sidney, British Columbia

    Google Scholar 

  54. Ferreira JG (2000) Ocean & Coastal Manag 43:99

    Google Scholar 

  55. Johnson BL (1999) Conser Ecol 3/8:1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry T. Hargrave .

Editor information

Barry T. Hargrave

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Hargrave, B.T., Silvert, W., Keizer, P.D. Assessing and Managing Environmental Risks Associated with Marine Finfish Aquaculture. In: Hargrave, B.T. (eds) Environmental Effects of Marine Finfish Aquaculture. Handbook of Environmental Chemistry, vol 5M. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b136021

Download citation

Publish with us

Policies and ethics