Skip to main content

Benthic Macrofaunal Changes Resulting from Finfish Mariculture

Part of the Handbook of Environmental Chemistry book series (HEC5,volume 5M)

Abstract

We present a review of the benthic macrofaunal changes that are circumstantially linked to intensive marine finfish aquaculture, or mariculture. The community structural and functional changes of macrofauna identified are mostly near-field effects, limited to the farm cage footprint. In common with other organic enrichment events in sediments, the mechanism in mariculture-related macrofaunal change is primarily caused by death due to hypoxia in sediments, followed by re-colonization with specialized organic enrichment tolerant macrofauna. Despite recent attention to the field of mariculture ecology, much still remains to be done to fully understand and manage the ecosystem effects of this activity. In the second part of this chapter we present a case history study from a marine tidal inlet (L'Etang) in the Bay of Fundy, Canada during a period of rapid industrialization, dominated first by pulp mill effluents in the 1970s, and then by salmon mariculture development beginning in the 1980s and continuing today. Circumstantial evidence links the temporal benthic macrofaunal changes found in L'Etang Inlet to far field organic enrichment effects, primarily resulting from pulp mill pollution in the most landward area and salmon mariculture in the seaward end. It is shown that the temporal macrofaunal changes at the seaward end are not due to hypoxia in sediments or to natural seasonal and interannual changes. A new alternative hypothesis in aquaculture ecology is proposed: that the macrofaunal changes are far field effects resulting from the increased sedimentation (quality and amount) associated with intensive mariculture.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tilseth S, Hansen T, Moller D (1991) Aquaculture 98:1

    CrossRef  Google Scholar 

  2. Hargrave BT (1994) Can Tech Rep Fish Aquat Sci 1949:79

    Google Scholar 

  3. Gowen RJ, Bradbury NB (1987) Oceanogr Mar Biol Annu Rev 25:563

    Google Scholar 

  4. Black KD (2001) Environmental impacts of aquaculture. CRC Press, Boca Raton

    Google Scholar 

  5. Bennett BA, Smith CR, Glaser B, Maybaum H (1994) Mar Ecol Prog Ser 108:205

    Google Scholar 

  6. van de Bund WJ, Olafsson E, Modig H, Elmgen R (2001) Mar Ecol Prog Ser 212:107

    Google Scholar 

  7. Pohle GW, Lim SSL, Frost BR (1994) In: MacKinnon BM, Burt MDB (eds) Proceedings of the workshop on ecological monitoring and research in the coastal environment of the Atlantic maritime ecozone. Env Can Atl Reg Occ Rep No 4:92

    Google Scholar 

  8. Fisheries and Oceans Canada(2004) A scientific review of the potential environmental effects of aquaculture in aquatic ecosystems, Vol III, Near-field organic enrichment from marine finfish aquaculture (Wildish DJ, Dowd D, Sutherland TF, Levings CD). Can Tech Rep Fish Aquat Sci 2450:1–66

    Google Scholar 

  9. Perkins EJ (1974) The biology of estuaries and coastal waters. Academic, London

    Google Scholar 

  10. Cromey CJ, Nickell TD, Black KD (2002) Aquaculture 214:211

    CrossRef  Google Scholar 

  11. Gray JS, Wu RS-S, Or YY (2002) Mar Ecol Prog Ser 238:249

    Google Scholar 

  12. Butman CA, Grassle JP (1992) J Mar Res 50:669

    Google Scholar 

  13. Grassle JP, Butman CA, Mills SW (1992) J Mar Res 50:717

    Google Scholar 

  14. Pearson TH, Gray JS, Johannsen PJ (1983) Mar Ecol 12:237

    Google Scholar 

  15. O'Connor B, Costelloe J, Dineen P, Faull J (1993) ICES CM 1993/F:19

    Google Scholar 

  16. Johannsen PJ, Boten HB, Tvedten OF (1994) Aquacult Fish Manage 25:55

    Google Scholar 

  17. Lu L, Wu RSS (1998) Env Pollut 101:241

    CAS  Google Scholar 

  18. Karakassis I, Hatziyanni E, Tsapakis M, Plaiti W (1999) Mar Ecol Prog Ser 184:205

    Google Scholar 

  19. Wildish DJ, Akagi HM, Hamilton N (2001) Bull Aquacult Assoc Can 101:49

    Google Scholar 

  20. Brooks KM, Stierns AR, Mahnken CVW (2003) Aquaculture 219:355

    CrossRef  CAS  Google Scholar 

  21. Pearson TH, Rosenberg R (1978) Oceanogr Mar Biol Annu Rev 16:229

    Google Scholar 

  22. Brown JR, Gowen RJ, McLusky DS (1987) J Exp Mar Biol Ecol 109:39

    CrossRef  Google Scholar 

  23. Weston DP (1990) Mar Ecol 61:233

    Google Scholar 

  24. Henderson AR, Ross DJ (1995) Aquacult Res 26:659

    Google Scholar 

  25. Karakassis I, Hatziyanni E (2000) Mar Ecol Prog Ser 203:247

    Google Scholar 

  26. Brooks KM, Mahnken VW (2003) Fish Res 62:255

    Google Scholar 

  27. Findlay RH, Watling L, Mayer LM (1995) Estuaries 18:145

    CAS  Google Scholar 

  28. Poole NJ, Wildish DJ, Kristmanson DD (1978) CRC Crit Rev Environ Control 8:153

    CAS  Google Scholar 

  29. Rhoads DC, Germano JD (1986) Hydrobiologia 142:291

    CrossRef  Google Scholar 

  30. Nilsson HC, Rosenberg R (1997) J Mar Systems 11:249

    Google Scholar 

  31. Wildish DJ, Hargrave BT, Pohle G (2001) ICES J Mar Sci 58:469

    CrossRef  CAS  Google Scholar 

  32. Wildish DJ, Akagi HM, Hamilton N, Hargrave BT (1999) Can Tech Rep Fish Aquat Sci 2286:31

    Google Scholar 

  33. Hargrave BT (1994) Can Tech Rep Fish Aquat Sci 1949:79

    Google Scholar 

  34. Cranston R (1994) Can Tech Rep Fish Aquat Sci 1949:93

    Google Scholar 

  35. Holmer M, Lassus P, Stewart JE, Wildish DJ (2001) ICES J Mar Sci 58:363

    CrossRef  Google Scholar 

  36. Wildish DJ, Hughes-Clarke JE, Pohle GW, Hargrave BT, Mayer LM (2004) Mar Ecol Prog Ser 267:99–105

    Google Scholar 

  37. Poole NJ, Wildish DJ (1979) In: Berkley RCW, Ellwood DC, Gooday GW (eds) Microbial polysaccharides and their degradation. Academic, London, p 399

    Google Scholar 

  38. Pearson TH (2001) Oceanogr Mar Biol Annu Rev 39:233

    Google Scholar 

  39. Heilskov AC, Holmer M (2001) ICES J Mar Sci 58:427

    CrossRef  CAS  Google Scholar 

  40. Nickell LA, Black KD, Hughes DJ, Overnell J, Brand T, Nickell TD, Breur E, Harvey SM (2003) J Exp Mar Biol Ecol 221:285–286

    Google Scholar 

  41. Pohle G, Frost B, Findlay R (2001) ICES J Mar Sci 58:417

    CrossRef  Google Scholar 

  42. Wildish DJ, Kristmanson DD (1997) Benthic suspension feeders and flow. Cambridge University Press, New York

    Google Scholar 

  43. Wildish DJ (1977) Helg Wiss Meeresunters 30:445

    Google Scholar 

  44. Wildish DJ, Fader GBJ, Lawton P, MacDonald AJ (1998) Con Shelf Res 18:105

    Google Scholar 

  45. Kostylev VE, Todd BJ, Fader GBJ, Courtney RC, Cameron GDM, Pickerill RA (2001) Mar Ecol Prog Ser 219:121

    Google Scholar 

  46. Wildish DJ, Stewart PL (2004) Can Sci Advisory Secretariat Res Doc 2004/012:31

    Google Scholar 

  47. Wildish DJ, Carson WG, Carson WV, Hull JH (1972) Fish Res Board Can MS Rep No 1177

    Google Scholar 

  48. Bourque BJ (2001) Twelve thousand years American Indians in Maine. University of Nebraska Press, Lincoln

    Google Scholar 

  49. Doucet R, Wilbur R (2000) Herring weirs: the only sustainable fishery. Image Express, St. George

    Google Scholar 

  50. Anderson JM (1984) Atlantic Salmon J 2:26

    Google Scholar 

  51. Wildish DJ, Martin JD, Wilson AJ, De Coste AM (1986) Can Tech Rep Fish Aquat Sci 1473

    Google Scholar 

  52. Wildish DJ, Akagi HM, Martin A (2003) Can Tech Rep Fish Aquat Sci 2447

    Google Scholar 

  53. Silvert W (1994) Can Tech Rep Fish Aquat Sci 1949:1

    Google Scholar 

  54. Holme NA, McIntyre AD (1971) (Eds) Methods for the study of marine benthos, IBP Handbook No 16. Blackwell, Oxford

    Google Scholar 

  55. Hunter B, Simpson AE (1976) J Mar Biol Assoc UK 56:951

    Google Scholar 

  56. Wildish DJ (1983) In: Thomas MLH (ed) Marine and coastal systems of the Quoddy region, New Brunswick. Can Spec Pub Fish Aquat Sci Ottawa 64:140

    Google Scholar 

  57. Wildish DJ, Carson WV, Wilson AJ, Hull JH (1974) Fish Res Board Can MS Rep No 1295

    Google Scholar 

  58. Wildish DJ, Poole NJ, Kristmanson DD (1977) Fish Mar Serv Tech Rep No 718

    Google Scholar 

  59. Wildish DJ, Wilson AJ, Akagi HM (1977) Fish Mar Serv MS Rep No 1462

    Google Scholar 

  60. Wildish DJ (1985) J Mar Biol-Assoc Ur 65:335 (2005) (In preparation)

    Google Scholar 

  61. Wildish DJ, Kristmanson DD (1979) J Fish Res Board Can 36:1197

    Google Scholar 

  62. Akagi H, Wildish DJ (1975) Fish Res Board Can MS Rep No 1370

    Google Scholar 

  63. Warwick RM, Clarke KR (2001) Oceanogr Mar Biol Ann Rev 39:207

    Google Scholar 

  64. Findlay RH, Watling G (1997) Mar Ecol Prog Ser 155:147

    CAS  Google Scholar 

  65. Diaz RJ, Rosenberg R (1995) Oceanogr Mar Biol Annu Rev 33:245

    Google Scholar 

  66. Kitching JA, Ebbling FJ, Gamble R, Hoate AA, Mcleod QR, Norton TA (1976) J Anim Ecol 45:731

    Google Scholar 

  67. Gray JS, Valderhaug V, Ugland KI (1985) In: Gibbs PE (ed) Proceedings European Marine Biology Symposium. Cambridge University Press, Cambridge, p 245

    Google Scholar 

  68. Strain PM, Wildish DJ, Yeats PA (1995) Mar Poll Bull 30:253

    CAS  Google Scholar 

  69. Thiel M, Sampson S, Watling L (1997) J Nat Hist 31:713

    Google Scholar 

  70. Bousfield EL (1973) Shallow-water gammaridean amphipoda of New England. Cornell University Press, Ithaca

    Google Scholar 

  71. Wildish DJ (1980) Int J Invert Reprod 2:311

    Google Scholar 

  72. Tyler AV (1972) J Fish Res Board Can 29:997

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. J. Wildish .

Editor information

Barry T. Hargrave

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Wildish, D.J., Pohle, G.W. Benthic Macrofaunal Changes Resulting from Finfish Mariculture. In: Hargrave, B.T. (eds) Environmental Effects of Marine Finfish Aquaculture. Handbook of Environmental Chemistry, vol 5M. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b136015

Download citation

Publish with us

Policies and ethics