Skip to main content

Far-Field Impacts of Eutrophication on the Intertidal Zone in the Bay of Fundy, Canada with Emphasis on the Soft-Shell Clam, Mya arenaria

Part of the Handbook of Environmental Chemistry book series (HEC5,volume 5M)

Abstract

A study was conducted in the Bay of Fundy, Canada in 2000–2003 to examine the effects of Ulva-dominated algal mats on the population dynamics of the soft-shell clam (Mya arenaria) and the possible role of Atlantic salmon farming in this interaction. A far-field linkage of the salmon farms to the intertidal zone was determined by the use of zinc:lithium tracers. A combination of laboratory and field-based experiments were conducted to assess the effects of algal mats on the recruitment, production (growth and survival) and behaviour of the clams. The results indicated that increased zinc concentrations were found in intertidal sediments located >1 km from the nearest salmon site. This implies that if the fine particulates from the salmon site were being transported that distance, then the dissolved fraction could also travel that far, providing it was not absorbed by other nutrient sinks along the way. The algal mats were found to negatively affect clam recruitment and behaviour. The experimental results were not as clear for negative effects on biological production, but growth was found to be lower than expected and survival on the beach was low. The economic cost of the eutrophication to the beaches might be substantial (estimated >100000 $CAD per clam beach). One solution would be an integrated culture philosophy where additional crops are intentionally grown and harvested so that a potential liability could become an asset to the marine coastal economy.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cloern JE (2001) Mar Ecol Prog Ser 210:223

    CAS  Google Scholar 

  2. Nixon SW (1998) Sci Am 9:48

    Google Scholar 

  3. Nixon SW (1995) Ophelia 41:199

    Google Scholar 

  4. Rosenberg R (1985) Mar Pollut Bull 16:227

    CAS  Google Scholar 

  5. Strain PM, Yeats PA (1999) Mar Pollut Bull 38:1163

    CAS  Google Scholar 

  6. Strain PM, Hargrave BT (2005) (in this volume). Springer, Berlin Heidelberg New York

    Google Scholar 

  7. Sowles JW (2005) (in this volume). Springer, Berlin Heidelberg New York

    Google Scholar 

  8. Bugden JBC, Hargrave BT, Strain PM, Stewart AJ (2001) Can Tech Rep Fish Aquat Sci 2356:96

    Google Scholar 

  9. Chopin T, Bastarache S (2002) Bull Aquacult Assoc Canada 102:119

    Google Scholar 

  10. Hayden HS, Blomster J, Maggs CA, Silva PC, Stanhope MJ, Waaland JR (2003) Eur J Phycol 38:277

    CrossRef  Google Scholar 

  11. Reise K, Herre E, Sturm M (1989) Helgol Meeresunters 43:417

    Google Scholar 

  12. Lavery PS, Lukatelich RJ, McComb AJ (1991) Estuar Coast Shelf Sci 33:1

    Google Scholar 

  13. Schories D (1995) Population ecology and mass development of Enteromorpha spp. (Chlorophyta) in the Wadden Sea intertidal at the island of Sylt (North Sea). Dissertation, Hamburg Univ, Hamburg (FRG), Fachber Biologie

    Google Scholar 

  14. Sundbaeck K, Carlson L, Nilsson C, Joensson B, Wulff A, Odmark S (1996) Aquat Microbial Ecol 10:195

    Google Scholar 

  15. Breber P (1985) Aquaculture 44:51

    CrossRef  Google Scholar 

  16. Cellina F, De Leo GA, Rizzoli AE, Viaroli P, Bartoli M (2003) Oceanol Acta 26:139

    CrossRef  Google Scholar 

  17. Everett RA (1991) J Exp Mar Biol Ecol 150:223

    CrossRef  Google Scholar 

  18. Thiel M, Stearns LM, Watling L (1998) Helgol Meeresunters 52:15

    Google Scholar 

  19. Anonymous (2004) New Brunswick salmon growers environmental policy and codes of practice, version 1.0. New Brunswick Salmon Growers Association. Letang, New Brunswick, p 218

    Google Scholar 

  20. Miner RW (1950) GP Putnams, New York, p 888

    Google Scholar 

  21. Strasser M (1999) Helgol Meeresunters 52:3

    Google Scholar 

  22. Abbott RT (1974) American seashells, the marine mollusca of the Atlantic and Pacific coasts of North America. Van Nostrand Reinhold, New York

    Google Scholar 

  23. Emerson CW, Grant J (1991) Limnol Oceanogr 36:1288

    Google Scholar 

  24. Loo LO, Rosenberg R (1989) J Exp Mar Biol Ecol 130:253

    CrossRef  Google Scholar 

  25. Hillson CJ (1977) Seaweeds. Pennsylvania State University Press, University Park

    Google Scholar 

  26. Taylor WR (1937) Marine algae of the northeastern coast of North America. University of Michigan Press, Ann Arbor

    Google Scholar 

  27. Vadas RL, Beal B (1987) Estuaries 10:171

    Google Scholar 

  28. Chapman VJ (1970) Seaweeds and their uses. Methuen, London

    Google Scholar 

  29. Bjoernsaeter BR, Wheeler PA (1990) J Phycol 26:603

    CAS  Google Scholar 

  30. Chou CL, Haya K, Paon LA, Burridge L, Moffatt JD (2002) Mar Pollut Bull 44:1259

    CAS  Google Scholar 

  31. Yeats PA, Milligan TG, Sutherland TF, Robinson SMC, Smith JA, Lawton P, Levings CD (2005) (in this volume). Springer, Berlin Heidelberg New York

    Google Scholar 

  32. Hargrave BT, Doucette LI, Phillips GA, Milligan TG, Wildish DJ (1998) Can Data Rep Fish Aquat Sci 1031:iv

    Google Scholar 

  33. Auffrey LM (2003) Effects of green algal mats on soft-shelled clams (Mya arenaria) in southwestern New Brunswick, Canada. MSc, University of New Brunswick

    Google Scholar 

  34. Bonsdorff E (1992) Neth J Sea Res 30:57

    Google Scholar 

  35. Hunt HL, Mullineaux LS (2002) Limnol Oceanogr 47:151

    Google Scholar 

  36. Bonsdorff E, Nelson WG (1992) Veliger 35:358

    Google Scholar 

  37. Armonies W (1992) Mar Ecol Prog Ser 83:197

    Google Scholar 

  38. Iwasaki K (1996) Venus. Japanese J Malacol 55:223

    Google Scholar 

  39. Olafsson EB (1988) Mar Biol 97:571

    Google Scholar 

  40. Uchida M, Numaguchi K (1996) J Mar Biotechnol 4:200

    Google Scholar 

  41. Appeldoorn RS (1982) J Shellfish Res 2:87

    Google Scholar 

  42. Brousseau DJ (1979) Mar Biol 51:221

    CrossRef  Google Scholar 

  43. Appeldoorn RS (1983) Fish Bull 81:75

    Google Scholar 

  44. Angus RB, Woo P (1984) Can MS Rep Fish Aquat Sci 1842:1

    Google Scholar 

  45. Mullen B, Woo P (1985) Can MS Rep Fish Aquat Sci 1877:1

    Google Scholar 

  46. Robert G (1979) MS Rep Fish Mar Serv Can :19

    Google Scholar 

  47. Beal BF, Parker MR, Vencile KW (2001) J Exp Mar Biol Ecol 264:133

    CrossRef  Google Scholar 

  48. Weiss ET, Carmichael RH, Valiela I (2002) Aquaculture 211:275

    CrossRef  CAS  Google Scholar 

  49. Nicholls DJ, Tubbs CR, Haynes FN (1981) Kiel Meeresforsch 5:511

    Google Scholar 

  50. Soulsby PG, Lowthion D, Houston M (1982) Mar Poll Bull 13:162

    Google Scholar 

  51. Thompson RJ (1979) J Fish Res Board Can 36:955

    Google Scholar 

  52. Eversole AG (1988) J Shellfish Res 7:117

    Google Scholar 

  53. Bayne BL, Holland DL, Moore MN, Lowe DM, Widdows J (1978) J Mar Biol Assoc UK 58:825

    Google Scholar 

  54. Xu XL, Ji WJ, Castell JD, O'Dor RK (1994) Aquaculture 119:359

    CrossRef  CAS  Google Scholar 

  55. Chase ME, Bailey RC (1999) J Great Lakes Res 25:122

    Google Scholar 

  56. Hillman RE, Boehm PD, Freitas SY (1988) J Shellfish Res 7:216

    Google Scholar 

  57. Lowe DM, Pipe RK (1985) Mar Env Res 17:234

    CrossRef  CAS  Google Scholar 

  58. Wu RSS, Levings CD (1980) Mar Pollut Bull 11:11

    Google Scholar 

  59. Barber BJ (1996) J Invert Pathol 67:161

    CrossRef  CAS  Google Scholar 

  60. Brousseau DJ (1978) Mar Biol 50:63

    CrossRef  Google Scholar 

  61. Jorgensen BB (1980) Oikos 34:68

    Google Scholar 

  62. Diaz RJ, Rosenberg R (1995) Oceanogr Mar Biol Annu Rev 33:245

    Google Scholar 

  63. Norkko A, Bonsdorff E (1996) Mar Ecol Prog Ser 131:143

    Google Scholar 

  64. Norkko A, Bonsdorff E (1996) Mar Ecol Prog Ser 140:141

    Google Scholar 

  65. Norkko A, Bonsdorff E (1996) PSZNI. Mar Ecol 17:355

    CAS  Google Scholar 

  66. Rosenberg R, Hellman B, Johansson B (1991) Mar Ecol Prog Ser 79:127

    Google Scholar 

  67. Taylor DL, Eggleston DB (2000) Mar Ecol Prog Ser 196:221

    Google Scholar 

  68. Norkko J, Bonsdorff E, Norkko A (2000) J Exp Mar Biol Ecol 248:79

    CrossRef  Google Scholar 

  69. Auffrey LM, Robinson SMC, Barbeau MA (2004) Mar Ecol Prog Ser 278:193–203

    Google Scholar 

  70. Glude JB (1955) Trans Am Fish Soc 84:13

    Google Scholar 

  71. Ropes JW (1968) US Fish Bull 67:183

    Google Scholar 

  72. Blundon JA, Kennedy VS (1982) J Exp Mar Biol Ecol 65:67

    Google Scholar 

  73. Sandberg E, Tallquist M, Bonsdorff E (1996) Mar Ecol 17:411

    CAS  Google Scholar 

  74. Belding DL (1930) The soft-shelled clam fishery of Massachusetts commission on administration and finance, Boston

    Google Scholar 

  75. Chandler RA, Robinson SMC, Martin JD (2001) Can Tech Rep Fish Aquat Sci 2390:11 pp

    Google Scholar 

  76. Lavery PS, McComb AJ (1991) Estuar Coast Shelf Sci 32:281

    Google Scholar 

  77. Gowan RJ, Bradbury NB (1987) Oceanogr Mar Biol Ann Rev 25:563

    Google Scholar 

  78. Underwood AJ (1997) Experiments in ecology. Cambridge University Press, Cambridge, UK

    Google Scholar 

  79. Green RH (1979) Sampling design and statistical methods for environmental biologists. Wiley, NY

    Google Scholar 

  80. Andrew NL, Mapstone BD (1987) Oceanogr Mar Biol Ann Rev 25:39

    Google Scholar 

  81. Zar JH (1999) Biostatistical analysis. Prentice Hall, London

    Google Scholar 

  82. Peterman R (1990) Ecology 71:2024

    Google Scholar 

  83. Elliott JM (1983) Freshwater Biological Association Science Publication 25:73

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. C. Robinson .

Editor information

Barry T. Hargrave

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Robinson, S.M.C., Auffrey, L.M., Barbeau, M.A. Far-Field Impacts of Eutrophication on the Intertidal Zone in the Bay of Fundy, Canada with Emphasis on the Soft-Shell Clam, Mya arenaria . In: Hargrave, B.T. (eds) Environmental Effects of Marine Finfish Aquaculture. Handbook of Environmental Chemistry, vol 5M. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b136014

Download citation

Publish with us

Policies and ethics