Skip to main content

The Effect of Marine Aquaculture on Fine Sediment Dynamics in Coastal Inlets

Part of the Handbook of Environmental Chemistry book series (HEC5,volume 5M)

Abstract

The formation and deposition of large, fast-sinking aggregates by flocculation governs the distribution of fine particulate material within the coastal zone. Three major factors control the development of a flocculated suspension: (1) particle number or concentration, (2) particle adhesion efficiency or stickiness, and (3) particle break-up, most often due to an applied shear. The steady state equilibrium size distribution of a flocculated suspension reflects a dynamic balance between particle aggregation and disaggregation; changes to concentration, composition, or turbulence can hence affect the distribution of fine particulate material, both inorganic and organic. Owing to the close association of many surface-active contaminants with flocs, the aggregation dynamics of the particulate material will strongly influence their fate. The introduction of waste feed, faecal material, and their resulting degradation products from open cage aquaculture operations in the coastal zone will potentially increase both particle concentration and particle stickiness. As a result, the natural flocculation and depositional equilibrium of an inlet can shift towards increased deposition of fine-grained particulate material within flocs and the sequestering of contaminants within the sediment. Evidence for such a shift in fine-sediment dynamics and contaminant transport has been found in the Western Isles region of New Brunswick.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Findlay RH, Watling L (1997) Mar Ecol Prog Ser 155:147

    CAS  Google Scholar 

  2. Gowen RJ, Smyth D, Silvert W (1994) Can Tech Rep Fish Aquat Sci 1949:19

    Google Scholar 

  3. Hevia MG, Rosenthal H, Gowen RJ (1996) J Appl Ichthyol 12:71

    Google Scholar 

  4. Bagnold RA, Barndorff-Nielsen OE (1980) Sedimentology 27:199

    Google Scholar 

  5. Bennett JG (1936) J Ind Fuel 19:22

    Google Scholar 

  6. Kranck K, Milligan TG (1985) Geomar Lett 5:61

    Google Scholar 

  7. Kranck K, Smith PC, Milligan TG (1996) Sedimentology 43:589

    Google Scholar 

  8. Kranck K, Smith PC, Milligan TG (1996) Sedimentology 43:597

    Google Scholar 

  9. Jackson GA (1995) Deep Sea Res II 42:159

    Google Scholar 

  10. Hill PS (1996) Deep Sea Res I 43:679

    Google Scholar 

  11. Kranck K (1980) Can J Earth Sci 17:1517

    Google Scholar 

  12. Hill PS, Milligan TG, Geyer WR (2000) Cont Shelf Res 20:2095

    CrossRef  Google Scholar 

  13. Curran KJ, Hill PS, Schell TM, Milligan TG, Piper DJW (2004) Sedimentology 51:1

    CrossRef  Google Scholar 

  14. Milligan TG, Loring DH (1997) Water Air Soil Pollut 99:33

    CAS  Google Scholar 

  15. Muschenheim DK, Kepkay PE, Kranck K (1989) Neth J Sea Res 23:283

    Google Scholar 

  16. Santschi PH, Balnois E, Wilkinson KJ, Zhang J, Buffle J (1998) Limnol Ocean 43:896

    CAS  Google Scholar 

  17. Milligan TG (1994) Can Tech Rep Hydrogr Ocean Sci 156

    Google Scholar 

  18. Hargrave BT, Phillips GA, Doucette LI, White MJ, Milligan TG, Wildish DJ, Cranston RE (1995) Can Tech Rep Fish Aquat Sci 2062

    Google Scholar 

  19. Milligan TG, Kranck K (1991) In: Syvitski JP (ed) Theory, Methods and Applications of Particle Size Analysis. Cambridge University Press, NY p 109

    Google Scholar 

  20. Kranck K, Milligan TG (1991) In: Syvitski JP (ed) Theory, Methods and Applications of Particle Size Analysis. Cambridge University Press, NY p 332

    Google Scholar 

  21. McCave IN, Jarvis J (1973) Sedimentology 20:305

    Google Scholar 

  22. Yeats PA, Milligan TG, Sutherland TF, Robinson SMC, Smith J, Lawton P, Levings CD (2005) Lithium normalized zinc and copper concentrations in sediments as measures of trace metal enrichment due to salmon aquaculture (in this volume). Springer, Berlin Heidelberg New York

    Google Scholar 

  23. Smith JN, Yeats PA, Milligan TG (2005) Geochronologies for fish farm contaminants in sediments from Limekiln Bay in the Bay of Fundy (in this volume). Springer, Berlin Heidelberg New York

    Google Scholar 

  24. Cowen JP, Bruland KW (1985) Deep Sea Res 32:253

    CrossRef  CAS  Google Scholar 

  25. Leppard GG (1997) Sci Total Environ 165:103

    Google Scholar 

  26. Quigley MS, Santschi PH, Hung CC, Guo L, Homeyman BD (2002) Limnol Ocean 47:367

    CAS  Google Scholar 

  27. Robinson SMC, Auffrey LM, Barbeau MA (2005) Far-field impacts of eutrophication on the intertidal zone in the Bay of Fundy with emphasis on the soft-shell clam, Mya arenaria (in this volume). Springer, Berlin Heidelberg New York

    Google Scholar 

  28. Milligan TG, Hill PS (1998) J Sea Res 39:227

    CrossRef  Google Scholar 

  29. Pohle G, Frost B, Findlay R (2001) ICES J Mar Sci 58:417

    CrossRef  Google Scholar 

  30. Wildish DJ, Pohle GB (2005) Benthic macrofaunal changes resulting from mariculture (in this volume). Springer, Berlin Heidelberg New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. G. Milligan .

Editor information

Barry T. Hargrave

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Milligan, T.G., Law, B.A. The Effect of Marine Aquaculture on Fine Sediment Dynamics in Coastal Inlets. In: Hargrave, B.T. (eds) Environmental Effects of Marine Finfish Aquaculture. Handbook of Environmental Chemistry, vol 5M. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b136013

Download citation

Publish with us

Policies and ethics