Skip to main content

Salmon Aquaculture, Nutrient Fluxes and Ecosystem Processes in Southwestern New Brunswick

Part of the Handbook of Environmental Chemistry book series (HEC5,volume 5M)

Abstract

Salmon aquaculture discharges organic wastes into the marine environment. Salmon metabolism and the waste discharges add nutrients and organic matter to and remove oxygen from both the water column and sediments. The salmon industry in Southwestern New Brunswick (SWNB) is used to illustrate how waste discharges can be estimated in the absence of detailed information on farm operations. A fish growth model and mass balance calculations are used to estimate carbon, nitrogen and phosphorus wastes at the farm scale. Feed nutrition data and environmental measurements are used to partition wastes into fractions, and to estimate the oxygen demand. The predicted demand at the time of maximum discharge is 200 times greater than the oxygen uptake measured in surface sediments at cages, suggesting that most farm wastes are dispersed over wide areas and do not accumulate directly under cages. The number of farmed fish in an inlet is then used to predict total discharges to that inlet. In SWNB, salmon aquaculture is the largest anthropogenic source of organic input to the coastal zone. The significance of the wastes on inlet scales (2–25 km) is evaluated by comparing element fluxes through salmon farms with fluxes due to natural processes: primary production, nutrient regeneration, and community respiration. In intensively farmed bays, fluxes due to salmon farms reach values of 20, 330 and 160% of those due to natural processes for oxygen, nitrogen and carbon, respectively: significant changes to the ecosystem have occurred in these bays. Spatial scales are critical in describing such impacts: effects will be greater close to the farms, and smaller when averaged over larger areas.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schaanning MT, Kupka Hansen P (2005) The suitability of electrode measurements for assessment of benthic organic impact and their use in a management system for marine fish farms (in this volume). Springer, Berlin Heidelberg New York

    Google Scholar 

  2. Hargrave BT, Duplisea DE, Pfeiffer E, Wildish DJ (1993) Mar Ecol Prog Ser 96:249

    Google Scholar 

  3. Tlusty MF, Pepper VA, Anderson MR (2005) Reconciling aquaculture's influence on the water column and benthos of an estuarine fjord – a case study from Bay d'Espoir, Newfoundland (in this volume). Springer, Berlin Heidelberg New York

    Google Scholar 

  4. Cromey CJ, Black KD (2005) Modelling the impacts of finfish aquaculture (in this volume). Springer, Berlin Heidelberg New York

    Google Scholar 

  5. Peterson RH, Page F, Steeves GD, Wildish DJ, Harmon P, Losier R (2001) Can Tech Rep Fish Aquat Sci 2337

    Google Scholar 

  6. Silvert W (1994) J Appl Icthyol 10:349

    Google Scholar 

  7. Strain PM, Wildish DJ, Yeats PA (1995) Mar Poll Bull 30:253

    CAS  Google Scholar 

  8. Iwama GK, Tautz AF (1981) Can J Fish Aquat Sci 38:649

    Google Scholar 

  9. Cho CY (1992) Aquaculture 100:107

    CrossRef  Google Scholar 

  10. Sveier H, Wathne E, Lied E (1999) Aquaculture 180:265

    CrossRef  Google Scholar 

  11. Thodesen JB, Grisdale-Helland B, Helland SJ, Gjerde B (1999) Aquaculture 180:237

    CrossRef  Google Scholar 

  12. Refstie S, Storebakken T, Baeverfjord G, Roem AJ (2001) Aquaculture 193:91

    CrossRef  CAS  Google Scholar 

  13. Einen O, Holmefjord I, Asgard T, Talbot C (1995) Aquaculture Res 26:701

    Google Scholar 

  14. Refstie S, Storebakken T, Roem AJ (1998) Aquaculture 162:301

    CrossRef  CAS  Google Scholar 

  15. Sveier H, Lied E (1998) Aquaculture 165:333

    CrossRef  Google Scholar 

  16. Storebakken T, Shearer KD, Baeverfjord G, Nielsen BG, Asgard T, Scott T, De Laporte A (2000) Aquaculture 184:115

    CrossRef  CAS  Google Scholar 

  17. Storebakken T, Shearer KD, Roem AJ (1998) Aquaculture 161:365

    CrossRef  CAS  Google Scholar 

  18. Bureau D, Cho CY (1999) Aquaculture 179:127

    CrossRef  CAS  Google Scholar 

  19. Stucchi D, Sutherland T-A, Levings C, Higgs D (2005) Near-field depositional model for salmon aquaculture waste (in this volume). Springer, Berlin Heidelberg New York

    Google Scholar 

  20. Sowles JW (2005) Assessing nitrogen carrying capacity for Blue Hill Bay; a management case history (in this volume). Springer, Berlin Heidelberg New York

    Google Scholar 

  21. Gillibrand PA, Gubbins MJ, Greathead C, Davies IM (2002) Scottish Fisheries Research Report Number 63/2002 Fisheries Research Services, Marine Laboratory, Aberdeen

    Google Scholar 

  22. Hargrave BT, Phillips GA, Doucette LI, White MJ, Milligan TG, Wildish DJ, Cranston RE (1997) Water Air Soil Pollut 99:641

    CAS  Google Scholar 

  23. Smith JN, Yeats PA, Milligan TG (2005) Sediment geochronologies for fish farm contaminants in Lime Kiln Bay, Bay of Fundy. Springer, Berlin Heidelberg New York

    Google Scholar 

  24. Thompson KR, Dowd M, Shen Y, Greenberg D (2002) Cont Shelf Res 22:1603

    CrossRef  Google Scholar 

  25. Department of Fisheries and Oceans (2003) Can Tech Rep Fish Aquat Sci 2489

    Google Scholar 

  26. Gregory D, Petrie B, Jordan F, Langille P (1993) Can Tech Rep Hydrog Ocean Sci 143

    Google Scholar 

  27. Martin JL, LeGresley MM, Strain PM (2001) Can Tech Rep Fish Aquat Sci 2349

    Google Scholar 

  28. Bugden JBC, Hargrave BT, Strain PM, Stewart ARJ (2001) Can Tech Rep Fish Aquat Sci 2356

    Google Scholar 

  29. Chopin TD, Welles D, Belyea E (2000) Huntsman Mar Sci Centre Occ Rep 2000/1:39

    Google Scholar 

  30. Auffrey LM, Robinson SMC, Barbeau MA (2002) Can Tech Rep Fish Aquat Sci 2411:84

    Google Scholar 

  31. Robinson SMC, Auffrey LM, Barbeau MA (2005) Far-field impacts of eutrophication on the intertidal zone in the Bay of Fundy, Canada, with emphasis on the soft-shell clam, Mya arenaria (in this volume). Springer, Berlin Heidelberg New York

    Google Scholar 

  32. Hargrave BT, Phillips GA, Neame PA, Prouse NJ (1982) Can Data Rep Fish Aquat Sci 354

    Google Scholar 

  33. Prouse NJ, Gordon DC Jr, Hargrave BT, Bird CJ, McLachlan J, Lakshminarayan JSS, Sita Devi J, Thomas MLH (1984) Can Tech Rep Fish Aquat Sci 1256:65

    Google Scholar 

  34. Emerson CW, Roff JC, Wildish DJ (1986) Ophelia 26:165

    Google Scholar 

  35. Harrison WG, Perry T (2001) Can Tech Rep Fish Aquat Sci 2352

    Google Scholar 

  36. Kepkay P, Harrison G, Bugden J, Perry T (2002) Can Tech Rep Fish Aquat Sci 2352:51

    Google Scholar 

  37. Harrison WG, Perry T, Li WKW (2005) Ecosystem indicators of water quality. Part I. Plankton biomass, primary production and nutrient demand (in this volume). Springer, Berlin Heidelberg New York

    Google Scholar 

  38. Logan A, Page FH, Thomas MLH (1984) Est Coast Shelf Sci 18:571

    Google Scholar 

  39. Kepkay PE, Harrison WG, Bugden JBC (2005) Ecosystem indicators of water quality. Part II. Oxygen production and oxygen demand (in this volume). Springer, Berlin Heidelberg New York

    Google Scholar 

  40. Sharp G, Semple R (1992) Department of Fisheries and Oceans Can Atlantic Fisheries Advisory Comm Working Paper 92/218, Dartmouth NS

    Google Scholar 

  41. Sharp G, Ugarte R, MacEachron T, Semple R, Black G (1999) Dept. of Fisheries and Oceans Regional Advisory Process Working Paper 99/29:18 p, Dartmouth, NS

    Google Scholar 

  42. Hargrave BT, Prouse NJ, Philips GA, Neame PA (1983) Can J Fish Aquat Sci 40:229

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Strain .

Editor information

Barry T. Hargrave

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Strain, P.M., Hargrave, B.T. Salmon Aquaculture, Nutrient Fluxes and Ecosystem Processes in Southwestern New Brunswick. In: Hargrave, B.T. (eds) Environmental Effects of Marine Finfish Aquaculture. Handbook of Environmental Chemistry, vol 5M. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b136003

Download citation

Publish with us

Policies and ethics