Advertisement

Modelling Intermolecular Forces for Organic Crystal Structure Prediction

  • Sarah (Sally) L. PriceEmail author
  • Louise S. Price
Chapter
Part of the Structure and Bonding book series (STRUCTURE, volume 115)

Abstract

Computational prediction of the crystal structures of an organic molecule requires sufficiently accurate models for the forces between the molecules to discriminate between the energies of alternative crystal structures. Such computational predictions are particularly valuable in understanding polymorphism, the ability of some molecules to crystallise in more than one structure. As methods of searching for the most energetically favourable crystal structures have been developed and applied to a wide range of organic molecules, reflecting the potential industrial utility of this emerging field of computational chemistry, it has become clear that the force-fields will have to encapsulate many subtleties of intermolecular interactions. We review the development of model potentials for crystal structure prediction and the design of molecular materials, and their role in quantitatively understanding the interplay of thermodynamics and kinetics in crystallisation.

Crystal Structure Prediction Intermolecular Forces Polymorphism Organic Crystal Structures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stone AJ (1996) The Theory of Intermolecular Forces. Clarendon, Oxford Google Scholar
  2. 2.
    Bernstein J (2002) Polymorphism in Molecular Crystals. Clarendon, Oxford Google Scholar
  3. 3.
    Chemburkar SR, Bauer J, Deming K, Spiwek H, Patel K, Morris J, Henry R, Spanton S, Dziki W, Porter W, Quick J, Bauer P, Donaubauer J, Narayanan BA, Soldani M, Riley D, McFarland K (2000) Organic Process Res Dev 4413–417 Google Scholar
  4. 4.
    Thallapally PK, Jetti RKR, Katz AK, Carrell HL, Singh K, Lahiri K, Kotha S, Boese R, Desiraju GR (2004) Angew Chem Int Edit 43:1149–1155 CrossRefGoogle Scholar
  5. 5.
    Dunitz JD, Bernstein J (1995) Accounts Chem Res 28:193–200 CrossRefGoogle Scholar
  6. 6.
    Bernstein J, Henck JO (1998) Mater Res Bull 33 Supplement 1:119–128 CrossRefGoogle Scholar
  7. 7.
    Henck JO, Bernstein J, Ellern A, Boese R (2001) J Am Chem Soc 123:1834–1841 CrossRefPubMedGoogle Scholar
  8. 8.
    Bernstein J, Davey RJ, Henck JO (1999) Angew Chem Int Edit 38:3441–3461 CrossRefGoogle Scholar
  9. 9.
    Price SL (2004) Adv Drug Deliver Rev 56:301–319 CrossRefGoogle Scholar
  10. 10.
    Groth P (1906) Chemische Krystallographie. Teil 1. Elemente: Anorganische Verbindungen ohne Salzcharakter. Einfache und complexe Halogenide, Cyanide und Azide der Metalle, nebst den zugehörigen Alkylverbindungen. Engelmann W, Leipzig, Germany Google Scholar
  11. 11.
    Groth P (1908) Chemische Krystallographie. Teil 2. Die anorganischen Oxo- und Sulfosalze. Engelmann W, Leipzig, Germany Google Scholar
  12. 12.
    Groth P (1910) Chemische Krystallographie. Teil 3. Aliphatische und hydroaromatische Kohlenstoffverbindungen. Engelmann W, Leipzig, Germany Google Scholar
  13. 13.
    Groth P (1917) Chemische Krystallographie. Teil 4. Aromatische Kohlenstoffverbindungen mit einem Benzolringe. Engelmann W, Leipzig, Germany Google Scholar
  14. 14.
    Groth P (1919) Chemische Krystallographie. Teil 5. Aromatische Kohlenstoffverbindungen mit mehreren Benzolringen heterocyclische Verbindungen. Engelmann W, Leipzig, Germany Google Scholar
  15. 15.
    Allen FH (2002) Acta Crystallogr B 58:380–388 CrossRefGoogle Scholar
  16. 16.
    Price SL (2004) Cryst Eng Comm 6:344–353 Google Scholar
  17. 17.
    Kitaigorodskii AI (1973) Molecular Crystal and Molecules. Academic, New York Google Scholar
  18. 18.
    Pertsin AJ, Kitaigorodsky AI (1987) The Atom–Atom Potential Method. Applications to Organic Molecular Solids. Springer-Verlag, Berlin Heidelberg New York Google Scholar
  19. 19.
    Morris KR (1999) in Polymorphism in Pharmaceutical Solids, Brittain HG (ed) p 125–181. Marcel Dekker, New York Google Scholar
  20. 20.
    Etter MC (1991) J Phys Chem 95:4601–4610 CrossRefGoogle Scholar
  21. 21.
    Desiraju GR (2002) Cryst Eng Comm 4:499–499 Google Scholar
  22. 22.
    Lewis TC, Tocher DA, Price SL (2004) Cryst Growth Des Google Scholar
  23. 23.
    Nangia A (2002) Cryst Eng Comm 5:983–993 Google Scholar
  24. 24.
    Taylor R, Kennard O, Versichel W (1983) J Am Chem Soc 105:5761–5766 CrossRefGoogle Scholar
  25. 25.
    Desiraju GR (1996) Accounts Chem Res 29:441–449 CrossRefGoogle Scholar
  26. 26.
    Nyburg SC, Faerman CH, Prasad L (1987) Acta Crystallogr B 43:106–110 CrossRefGoogle Scholar
  27. 27.
    Nyburg SC, Faerman CH (1985) Acta Crystallogr B 41:274–279 CrossRefGoogle Scholar
  28. 28.
    Desiraju GR, Parthasarathy R (1989) J Am Chem Soc 111:8725–8726 CrossRefGoogle Scholar
  29. 29.
    Price SL, Stone AJ, Lucas J, Rowland RS, Thornley AE (1994) J Am Chem Soc 116:4910–4918 CrossRefGoogle Scholar
  30. 30.
    Lommerse JPM, Stone AJ, Taylor R, Allen FH (1996) J Am Chem Soc 118:3108–3116 CrossRefGoogle Scholar
  31. 31.
    Bruno IJ, Cole JC, Lommerse JPM, Rowland RS, Taylor R, Verdonk ML (1997) J Comput Aid Mol Des 11:525–537 CrossRefGoogle Scholar
  32. 32.
    Allen FH, Motherwell WDS, Raithby PR, Shields GP, Taylor R (1999) New J Chem 23:25–34 CrossRefGoogle Scholar
  33. 33.
    Desiraju GR (1989) Crystal Engineering: the Design of Organic Solids. Elsevier, Amsterdam Google Scholar
  34. 34.
    Aakeroy CB (1997) Acta Crystallogr B 53:569–586 CrossRefGoogle Scholar
  35. 35.
    Moulton B, Zaworotko MJ (2001) Chem Rev 101:1629–1658 CrossRefPubMedGoogle Scholar
  36. 36.
    Hunter CA (2004) Angew Chem Int Edit 43:5310–5324 CrossRefGoogle Scholar
  37. 37.
    Gavezzotti A (ed) (1997) Theoretical Aspects and Computer Modeling of the Molecular Solid State. Wiley, Chichester Google Scholar
  38. 38.
    Williams DE (1999) Molecular Packing Analysis Version 2. Chemistry Dept, University of Louisville Google Scholar
  39. 39.
    Gale JD, Rohl AL (2003) Mol Simulat 29:291–341 CrossRefGoogle Scholar
  40. 40.
    Willock DJ, Price SL, Leslie M, Catlow CRA (1995) J Comput Chem 16:628–647 CrossRefGoogle Scholar
  41. 41.
    Beyer T, Price SL (2000) Cryst Eng Comm 2:183–190 Google Scholar
  42. 42.
    Mayo SL, Olafson BD, Goddard WA (1990) J Phys Chem 94:8897–8909 CrossRefGoogle Scholar
  43. 43.
    Warshel A, Lifson S (1970) J Chem Phys 53:582–594 CrossRefGoogle Scholar
  44. 44.
    Hagler AT, Huler E, Lifson S (1974) J Am Chem Soc 96:5319–5327 CrossRefPubMedGoogle Scholar
  45. 45.
    Lifson S, Hagler AT, Dauber P (1979) J Am Chem Soc 101:5111–5121 CrossRefGoogle Scholar
  46. 46.
    Hagler AT, Dauber P, Lifson S (1979) J Am Chem Soc 101:5131–5141 CrossRefGoogle Scholar
  47. 47.
    Hagler AT, Lifson S, Dauber P (1979) J Am Chem Soc 101:5122–5130 CrossRefGoogle Scholar
  48. 48.
    Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) J Am Chem Soc 117:5179–5197 CrossRefGoogle Scholar
  49. 49.
    Maple JR, Hwang MJ, Stockfisch TP, Dinur U, Waldman M, Ewig CS, Hagler AT (1994) J Comput Chem 15:162–182 CrossRefGoogle Scholar
  50. 50.
    Sun H (1998) J Phys Chem B 102:7338–7364 CrossRefGoogle Scholar
  51. 51.
    Price SL, Stone AJ (1984) Mol Phys 51:569–583 Google Scholar
  52. 52.
    Damm W, Frontera A, TiradoRives J, Jorgensen WL (1997) J Comput Chem 18:1955–1970 CrossRefGoogle Scholar
  53. 53.
    Jorgensen WL, Maxwell DS, TiradoRives J (1996) J Am Chem Soc 118:11225–11236 CrossRefGoogle Scholar
  54. 54.
    Price DJ, Roberts JD, Jorgensen WL (1998) J Am Chem Soc 120:9672–9679 CrossRefGoogle Scholar
  55. 55.
    van Eijck BP (2002) J Comput Chem 23:456–462 CrossRefPubMedGoogle Scholar
  56. 56.
    Belsky VK, Zorkii PM (1977) Acta Crystallogr A 33:1004–1006 CrossRefGoogle Scholar
  57. 57.
    Steed JW (2003) Cryst Eng Comm 5:169–179 Google Scholar
  58. 58.
    Steiner T (2000) Acta Crystallogr B 56:673–676 CrossRefGoogle Scholar
  59. 59.
    Pidcock E, Motherwell WDS, Cole JC (2003) Acta Crystallogr B 59:634–640 CrossRefGoogle Scholar
  60. 60.
    Gao DQ, Williams DE (1999) Acta Crystallogr A 55:621–627 CrossRefGoogle Scholar
  61. 61.
    Day GM, Chisholm J, Shan N, Motherwell WDS, Jones W (2004) Cryst Growth Des 4:1327–1340 CrossRefGoogle Scholar
  62. 62.
    Bazterra VE, Ferraro MB, Facelli JC (2002) J Chem Phys 116:5984–5991 CrossRefGoogle Scholar
  63. 63.
    Karamertzanis PG, Pantelides CC (2005) J Comput Chem 26:304–324 CrossRefPubMedGoogle Scholar
  64. 64.
    Anghel AT, Day GM, Price SL (2002) Cryst Eng Comm 4:348–355 Google Scholar
  65. 65.
    Hulme A, Price SL, Tocher DA (2005) J Am Chem Soc 127:1116–1117 CrossRefPubMedGoogle Scholar
  66. 66.
    Tremayne M, Grice L, Pyatt JC, Seaton CC, Kariuki BM, Tsui HHY, Price SL, Cherryman JC (2004) J Am Chem Soc 126:7071–7081 CrossRefPubMedGoogle Scholar
  67. 67.
    van Eijck BP (2002) Phys Chem Chem Phys 4:4789–4794 CrossRefGoogle Scholar
  68. 68.
    Gavezzotti A (1991) J Am Chem Soc 113:4622–4629 CrossRefGoogle Scholar
  69. 69.
    Chaka AM, Zaniewski R, Youngs W, Tessier C, Klopman G (1996) Acta Crystallogr B 52:165–183 CrossRefGoogle Scholar
  70. 70.
    Holden JR, Du ZY, Ammon HL (1993) J Comput Chem 14:422–437 CrossRefGoogle Scholar
  71. 71.
    Verwer P, Leusen FJJ (1998) In: Reviews in Computational Chemistry, Lipkowitz KB, Boyd DB (eds). Wiley-VCH, New York p 327–365 Google Scholar
  72. 72.
    Gdanitz RJ (1992) Chem Phys Lett 190:391–396 CrossRefGoogle Scholar
  73. 73.
    Karfunkel HR, Gdanitz RJ (1992) J Comput Chem 13:1171–1183 CrossRefGoogle Scholar
  74. 74.
    Accelrys Inc (1999) Cerius2 Modelling Environment Version 4.0. Accelrys Inc, San Diego Google Scholar
  75. 75.
    Leusen FJJ (2003) Cryst Growth Des 3:189–192 CrossRefGoogle Scholar
  76. 76.
    van Eijck BP, Mooij WTM, Kroon J (1995) Acta Crystallogr B 51:99–103 CrossRefGoogle Scholar
  77. 77.
    Price SL, Wibley KS (1997) J Phys Chem A 101:2198–2206 CrossRefGoogle Scholar
  78. 78.
    Stone AJ (1981) Chem Phys Lett 83:233–239 CrossRefGoogle Scholar
  79. 79.
    Stone AJ, Alderton M (1985) Mol Phys 56:1047–1064 Google Scholar
  80. 80.
    Karamertzanis PG, Pantelides CC (2004) Mol Simulat 30:413–436 CrossRefGoogle Scholar
  81. 81.
    Payne RS, Roberts RJ, Rowe RC, Docherty R (1998) J Comput Chem 19:1–20 CrossRefGoogle Scholar
  82. 82.
    Mooij WTM, van Eijck BP, Price SL, Verwer P, Kroon J (1998) J Comput Chem 19:459–474 CrossRefGoogle Scholar
  83. 83.
    Gavezzotti A, Filippini G (1995) J Am Chem Soc 117:12299–12305 CrossRefGoogle Scholar
  84. 84.
    Wiberg KB, Rablen PR (1993) J Comput Chem 14:1504–1518 CrossRefGoogle Scholar
  85. 85.
    Price SL (1997) In: Scheiner S (ed) Molecular Interactions From van der Waals to Strongly Bound Complexes. Wiley, Chichester, UK Google Scholar
  86. 86.
    Filippini G, Gavezzotti A (1993) Acta Crystallogr B 49:868–880 CrossRefGoogle Scholar
  87. 87.
    Gavezzotti A, Filippini G (1994) J Phys Chem 98:4831–4837 CrossRefGoogle Scholar
  88. 88.
    Cox SR, Hsu LY, Williams DE (1981) Acta Crystallogr A 37:293–301 CrossRefGoogle Scholar
  89. 89.
    Hsu L-Y, Williams DE (1980) Acta Crystallogr A 36:277–281 CrossRefGoogle Scholar
  90. 90.
    Williams DE, Houpt DJ (1986) Acta Crystallogr B 42:286–295 CrossRefGoogle Scholar
  91. 91.
    Coombes DS, Price SL, Willock DJ, Leslie M (1996) J Phys Chem 100:7352–7360 CrossRefGoogle Scholar
  92. 92.
    Beyer T, Price SL (2000) J Phys Chem B 104:2647–2655 CrossRefGoogle Scholar
  93. 93.
    Williams DE, Weller RR (1983) J Am Chem Soc 105:4143–4148 CrossRefGoogle Scholar
  94. 94.
    Williams DE (1991) In: Reviews in Computational Chemistry. Lipkowitz KB, Boyd DB (eds). VCH, New York p 219–271 Google Scholar
  95. 95.
    Williams DE (1994) J Comput Chem 15:719–732 CrossRefGoogle Scholar
  96. 96.
    Williams DE (1999) J Mol Struct 486:321–347 CrossRefGoogle Scholar
  97. 97.
    Williams DE (2001) J Comput Chem 22:1–20 CrossRefGoogle Scholar
  98. 98.
    Williams DE (2001) J Comput Chem 22:1154–1166 CrossRefGoogle Scholar
  99. 99.
    Wales DJ, Scheraga HA (1999) Science 285:1368–1372 Google Scholar
  100. 100.
    Pillardy J, Arnautova YA, Czaplewski C, Gibson KD, Scheraga HA (2001) P Natl Acad Sci USA 98:12351–12356 CrossRefGoogle Scholar
  101. 101.
    Arnautova YA, Pillardy J, Czaplewski C, Scheraga HA (2003) J Phys Chem B 107:712–723 CrossRefGoogle Scholar
  102. 102.
    Mooij WTM, van Eijck BP, Kroon J (1999) J Phys Chem A 103:9883–9890 CrossRefGoogle Scholar
  103. 103.
    Rice BM, Sorescu DC (2004) J Phys Chem B 108:17730–17739 CrossRefGoogle Scholar
  104. 104.
    Sorescu DC, Rice BM, Thompson DL (1997) J Phys Chem B 101:798–808 CrossRefGoogle Scholar
  105. 105.
    Sorescu DC, Rice BM, Thompson DL (1998) J Phys Chem B 102:6692–6695 CrossRefGoogle Scholar
  106. 106.
    Sorescu DC, Rice BM, Thompson DL (1999) J Phys Chem B 103:6783–6790 CrossRefGoogle Scholar
  107. 107.
    Sorescu DC, Rice BM, Thompson DL (1998) J Phys Chem B 102:948–952 CrossRefGoogle Scholar
  108. 108.
    Tuble SC, Anwar J, Gale JD (2004) J Am Chem Soc 126:396–405 PubMedGoogle Scholar
  109. 109.
    Smith W, Forester TR (1996) J Mol Graphics 14:136–141 CrossRefGoogle Scholar
  110. 110.
    Leslie M (2003) Mol Phys (in press) Google Scholar
  111. 111.
    Gray AE, Day GM, Leslie M, Price SL (2004) Mol Phys 102:1067–1083 CrossRefGoogle Scholar
  112. 112.
    Besainou S, Cardini G, Does DA (1991) Chem Phys 156:71–77 CrossRefGoogle Scholar
  113. 113.
    Day GM, Price SL (2001) In: Handbook of Elastic Properties of Solids, Liquids and Gases. Volume III: Elastic Properties of Solids: Biological and Organic Materials, Earth and Marine Sciences, Levy M (ed). Academic, New York p 3–49 Google Scholar
  114. 114.
    Day GM, Price SL, Leslie M (2001) Cryst Growth Des 1:13–26 CrossRefGoogle Scholar
  115. 115.
    Nichols G, Frampton CS (1998) J Pharm Sci 87:684–693 CrossRefPubMedGoogle Scholar
  116. 116.
    Strachan CJ, Rades T, Newnham DA, Gordon KC, Pepper M, Taday PF (2004) Chem Phys Lett 390:20–24 CrossRefGoogle Scholar
  117. 117.
    Day GM, Price SL, Leslie M (2003) J Phys Chem B 107:10919–10933 CrossRefGoogle Scholar
  118. 118.
    van Eijck BP (2001) J Comput Chem 22:816–826 CrossRefGoogle Scholar
  119. 119.
    Lewis TC, Tocher DA, Day GM, Price SL (2003) Cryst Eng Comm 5:3–9 Google Scholar
  120. 120.
    Dunitz JD, Filippini G, Gavezzotti A (2000) Tetrahedron 56:6595–6601 CrossRefGoogle Scholar
  121. 121.
    Dunitz JD, Gavezzotti A (1999) Accounts Chem Res 32:677–684 CrossRefGoogle Scholar
  122. 122.
    Bauer J, Spanton S, Henry R, Quick J, Dziki W, Porter W, Morris J (2001) Pharmaceut Res 18:859–866 CrossRefGoogle Scholar
  123. 123.
    Price LS, Beyer T, Price SL (2004) http://www.cposs.org.uk/
  124. 124.
    Brodersen S, Wilke S, Leusen FJJ, Engel G (2003) Phys Chem Chem Phys 5:4923–4931 CrossRefGoogle Scholar
  125. 125.
    Payne RS, Rowe RC, Roberts RJ, Charlton MH, Docherty R (1999) J Comput Chem 20:262–273 CrossRefGoogle Scholar
  126. 126.
    Ouvrard C, Price SL (2004) Cryst Growth Des 4:1119–1127 CrossRefGoogle Scholar
  127. 127.
    van Eijck BP, Kroon J (1999) J Comput Chem 20:799–812 CrossRefGoogle Scholar
  128. 128.
    Mooij WTM, van Eijck BP, Kroon J (2000) J Am Chem Soc 122:3500–3505 CrossRefGoogle Scholar
  129. 129.
    van Eijck BP, Mooij WTM, Kroon J (2001) J Comput Chem 22:805–815 CrossRefGoogle Scholar
  130. 130.
    Buttar D, Charlton MH, Docherty R, Starbuck J (1998) J Chem Soc Perk T 2:763–772 CrossRefGoogle Scholar
  131. 131.
    Errede LA, Etter MC, Williams RC, Darnauer SM (1981) J Chem Soc Perk T 2:233–238 CrossRefGoogle Scholar
  132. 132.
    Aakeroy CB, Nieuwenhuyzen M, Price SL (1998) J Am Chem Soc 120:8986–8993 CrossRefGoogle Scholar
  133. 133.
    Mooij WTM, van Duijneveldt FB, van Duijneveldt-van de Rijdt J, van Eijck BP (1999) J Phys Chem A 103:9872–9882 CrossRefGoogle Scholar
  134. 134.
    Cox SR, Williams DE (1981) J Comput Chem 2:304–323 CrossRefGoogle Scholar
  135. 135.
    Price SL, Andrews JS, Murray CW, Amos RD (1992) J Am Chem Soc 114:8268–8276 CrossRefGoogle Scholar
  136. 136.
    Derissen JL, Smit PH (1974) Acta Crystallogr B 30:2240–2242 CrossRefGoogle Scholar
  137. 137.
    Nobeli I, Price SL (1999) J Phys Chem A 103:6448 CrossRefGoogle Scholar
  138. 138.
    Wheatley RJ, Price SL (1990) Mol Phys 69:507–533 Google Scholar
  139. 139.
    Nobeli I, Price SL, Wheatley RJ (1998) Mol Phys 95:525–537 CrossRefGoogle Scholar
  140. 140.
    Wheatley RJ (1997) GMUL 3s: an extension to the GMUL program (version 3) that calculates an analytical form for the overlap of distributed charge densities. University of Nottingham Google Scholar
  141. 141.
    Wheatley RJ (1993) Mol Phys 79:597–610 Google Scholar
  142. 142.
    Hayes IC, Stone AJ (1984) Mol Phys 53:83–105 Google Scholar
  143. 143.
    Mitchell JBO, Price SL (2000) J Phys Chem A 104:10958–10971 CrossRefGoogle Scholar
  144. 144.
    Mitchell JBO, Price SL, Leslie M, Buttar D, Roberts RJ (2001) J Phys Chem A 105:9961–9971 CrossRefGoogle Scholar
  145. 145.
    Maginn SJ, Compton RG, Harding MS, Brennan CM, Docherty R (1993) Tetrahedron Lett 34:4349 CrossRefGoogle Scholar
  146. 146.
    Day GM, Price SL (2003) J Am Chem Soc 125:16434–16443 CrossRefPubMedGoogle Scholar
  147. 147.
    Barnett SA, Broder CK, Ibberson R et al. (2005) Acta Crystallogr B (in preparation) Google Scholar
  148. 148.
    Oswald IDH, Allan DR, Day GM, Motherwell WDS, Parsons S (2005) Cryst Growth Des Google Scholar
  149. 149.
    Xantheas SS (2005) In: Intermolecular Forces and Clusters. Wales DJ (ed) Struc Bond 115 (in press) Google Scholar
  150. 150.
    Szalewicz K (2005) In: Intermolecular Forces and Clusters. Wales DJ (ed) Struc Bond 115 (in press) Google Scholar
  151. 151.
    Mooij WTM, Leusen FJJ (2001) Phys Chem Chem Phys 3:5063–5066 CrossRefGoogle Scholar
  152. 152.
    Day GM, Chisholm J, Shan N, Motherwell WDS, Jones W (2004) Cryst Growth Des 4:1327–1340 CrossRefGoogle Scholar
  153. 153.
    Day GM, Motherwell WDS, Jones W (2005) Cryst Growth Des 5:1023–1033 CrossRefGoogle Scholar
  154. 154.
    Beyer T, Lewis T, Price SL (2001) Cryst Eng Comm 3:178–212 Google Scholar
  155. 155.
    Lommerse JPM, Motherwell WDS, Ammon HL, Dunitz JD, Gavezzotti A, Hofmann DWM, Leusen FJJ, Mooij WTM, Price SL, Schweizer B, Schmidt MU, van Eijck BP, Verwer P, Williams DE (2000) Acta Crystallogr B 56:697–714 CrossRefGoogle Scholar
  156. 156.
    Motherwell WDS, Ammon HL, Dunitz JD, Dzyabchenko A, Erk P, Gavezzotti A, Hofmann DWM, Leusen FJJ, Lommerse JPM, Mooij WTM, Price SL, Scheraga H, Schweizer B, Schmidt MU, van Eijck BP, Verwer P, Williams DE (2002) Acta Crystallogr B 58:647–661 CrossRefGoogle Scholar
  157. 157.
    Day GM, Motherwell WDS, Ammon HL, Boerrigter SXM, Della Valle RG, Venuti E, Dzyabchenko A, Dunitz JD, Schweizer B, van Eijck BP, Erk P, Facelli JC, Bazterra VE, Ferraro MB, Hofmann DWM, Leusen FJJ, Liang C, Pantelides CC, Karamertzanis PG, Price SL, Lewis TC, Nowell H, Torrisi A, Scheraga H, Arnautova YA, Schmidt MU, Verwer P (2005) Acta Crystallogr B (in press) Google Scholar
  158. 158.
    Jetti RKR, Boese R, Sarma J, Reddy LS, Vishweshwar P, Desiraju GR (2003) Angew Chem Int Edit 42:1963–1967 CrossRefGoogle Scholar
  159. 159.
    Gavezzotti A, Filippini G (1996) J Am Chem Soc 118:7153–7157 CrossRefGoogle Scholar
  160. 160.
    Schmidt MU (1999) In: Braga D, Grepioni F, Orpen AG (eds) Crystal Engineering: From Molecules and Crystals to Materials. Kluwer, Dordrecht p 331–348 Google Scholar
  161. 161.
    Erk P, Hengelsberg H, Haddow MF, van Gelder R (2004) Cryst Eng Comm 6:474–483 Google Scholar
  162. 162.
    Schmidt MU, Dinnebier RE (1999) J Appl Crystallogr 32:178–186 CrossRefGoogle Scholar
  163. 163.
    Carlucci L, Gavezzotti A (2004) Chem Eur J 11:271–279 CrossRefGoogle Scholar
  164. 164.
    Blagden N, Davey RJ (2003) Cryst Growth Des 3:873–885 CrossRefGoogle Scholar
  165. 165.
    Cross WI, Blagden N, Davey RJ, Pritchard RG, Neumann MA, Roberts RJ, Rowe RC (2003) Cryst Growth Des 3:151–158 CrossRefGoogle Scholar
  166. 166.
    Blagden N, Cross WI, Davey RJ, Broderick M, Pritchard RG, Roberts RJ, Rowe RC (2001) Phys Chem Chem Phys 3:3819–3825 CrossRefGoogle Scholar
  167. 167.
    Ha JM, Wolf JH, Hillmyer MA, Ward MD (2004) J Am Chem Soc 126:3382–3383 CrossRefPubMedGoogle Scholar
  168. 168.
    Rovira C, Novoa JJ (2001) J Phys Chem B 105:1710–1719 CrossRefGoogle Scholar
  169. 169.
    Byrd EFC, Scuseria GE, Chabalowski CF (2004) J Phys Chem B 108:13100–13106 CrossRefGoogle Scholar
  170. 170.
    Gavezzotti A (2002) J Phys Chem B 106:4145–4154 CrossRefGoogle Scholar
  171. 171.
    Gavezzotti A (2003) Cryst Eng Comm 5:429–438 Google Scholar
  172. 172.
    Gavezzotti A (2003) J Phys Chem B 107:2344–2353 CrossRefGoogle Scholar
  173. 173.
    Gavezzotti A (2003) Cryst Eng Comm 5:439–446 Google Scholar
  174. 174.
    Gavezzotti A (1994) Acc Chem Res 27:309–314 CrossRefGoogle Scholar
  175. 175.
    Gavezzotti A (2002) Cryst Eng Comm 4:343–347 Google Scholar
  176. 176.
    Dunitz JD (2003) Chem Commun 545–548 Google Scholar
  177. 177.
    Desiraju GR (1997) Science 278:404–405 CrossRefGoogle Scholar
  178. 178.
    Davey RJ, Allen K, Blagden N, Cross WI, Lieberman HF, Quayle MJ, Righini S, Seton L, Tiddy GJT (2002) Cryst Eng Comm 4:257–264 Google Scholar

Authors and Affiliations

  1. 1.Department of ChemistryUniversity College LondonLondonUK

Personalised recommendations