Skip to main content

Spin Crossover in Pyrazolylborate and Pyrazolylmethane Complexes

  • Chapter
Spin Crossover in Transition Metal Compounds I

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 233))

Abstract

The electronic spin-state crossover observed upon cooling and at high-pressure in the iron(II) and cobalt(II) complexes formed with the HB(pz)3 -and HC(pz)3 ligands and their various methyl derivatives span a variety of different behaviors. Specifically [Fe(HB(pz)3)2], which is low-spin at 295 K, undergoes a spin state crossover to the high spin state both upon heating to ca. 420 K and at high pressure. [Fe(HB(3,5-(CH3)2pz)3)2], which is high-spin at 295 K, undergoes a spin state crossover to the low spin state both upon cooling below ca. 195 K and at high pressure. In contrast, [Fe(HB(3,4,5-(CH3)3pz)3)2] remains high-spin between 1.9 and 295 K but is gradually converted to the low-spin state with increasing pressure. Similarly, [Fe(HC(pz)3)2](BF4)2, which is low-spin at 295 K, undergoes a spin-state crossover to the high spin state upon heating. In a parallel fashion, [Fe(HC(3,5-(CH3)2pz)3)2]I2, which is high-spin at 295 K, is completely converted to the low-spin state upon cooling. In contrast, [Fe(HC(3,5-(CH3)2pz)3)2](BF4)2, which is high-spin at 295 K, exhibits a phase transition upon cooling below 206 K in which only one-half of the iron(II) is converted to the low-spin state; the remaining one-half of the iron(II) remains high-spin even upon cooling to 4.2 K. This chapter presents a detailed discussion of these spin-state changes and those observed in the related cobalt(II) complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

acpa[H]:

N-(1-acetyl-2-propylidene)(2-pyridylmethyl)amine

HS:

high-spin

LS:

low-spin

NMR:

nuclear magnetic resonance

Ph:

phenyl

pz:

pyrazolyl

py:

pyridyl

References

  1. Trofimenko S (1999) Scorpionates: The Coordination Chemistry of Polypyrazolylborate Ligands. Imperial College Press, London

    Google Scholar 

  2. Trofimenko S (1993) Chem Rev 93:943

    Google Scholar 

  3. Bromberg SE, Yang H, Asplund MC, Lian T, McNamara BK, Kotz KT, Yeston JS, Wilkens M, Frei H, Bergman RG, Harris CB (1997) Science 278:260

    Google Scholar 

  4. Labinger JA, Bercaw JE (2002) Nature 417:507

    Google Scholar 

  5. Rheingold AL, Liable-Sands LM, Incarvito CL, Trofimenko S (2002) J Chem Soc Dalton Trans 2297

    Google Scholar 

  6. Kirby JP, Weldon BT, McCusker JK (1998) Inorg Chem 37:3658

    Google Scholar 

  7. Shirasawa N, Nguyet TT, Hikichi S, Moro-oka Y, Akita M (2001) Organometallics 20:3582

    Google Scholar 

  8. Ogihara T, Hikichi S, Akita M, Moro-oka Y (1998) Inorg Chem 37:2614

    Google Scholar 

  9. Belderrain TR, Paneque M, Carmona E, Gutiérrez-Puebla E, Monge MA, Ruiz-Valero C (2002) Inorg Chem 41:425

    Google Scholar 

  10. Roberts SA, Young CG, Cleland WE Jr, Ortega RB, Enemark JH (1988) Inorg Chem 27:3044

    Google Scholar 

  11. Xiao Z, Young CG, Enemark JH, Wedd AG (1992) J Am Chem Soc 114:9194

    Google Scholar 

  12. Xiao Z, Bruck MA, Doyle C, Enemark JH, Grittini C, Gable RW, Wedd AG, Young CG (1995) Inorg Chem 34:5950

    Google Scholar 

  13. Xiao Z, Bruck MA, Enemark JH, Young CG, Wedd AG (1996) Inorg Chem 35:7508

    Google Scholar 

  14. Xiao Z, Gable RW, Wedd AG, Young CG (1996) J Am Chem Soc 118:2912

    Google Scholar 

  15. Reger DL, Mason SS, Rheingold AL, Ostrander RL (1993) Inorg Chem 32:5216

    Google Scholar 

  16. Reger DL, Mason SS (1994) Polyhedron 13:3059

    Google Scholar 

  17. Looney A, Saleh A, Zhang Y, Parkin, G (1994) Inorg Chem 33:1158

    Google Scholar 

  18. Pettinari C, Santini C, Leonesi D (1994) Polyhedron 13:1553

    Google Scholar 

  19. Lipton AS, Mason SS, Reger DL, Ellis PD (1994) J Am Chem Soc 116:10182

    Google Scholar 

  20. Reger DL, Myers SM, Mason SS, Rheingold AL, Haggerty BS, Ellis PD (1995) Inorg Chem 34:4996

    Google Scholar 

  21. Reger DL, Myers SM, Mason SS, Darensbourg DJ, Holtcamp MW, Reibenspeis JH, Lipton AS, Ellis PD (1995) J Am Chem Soc 117:10998

    Google Scholar 

  22. Looney A, Han R, McNeill K, Parkin G (1993) J Am Chem Soc 115:4690

    Google Scholar 

  23. Han R, Looney A, McNeill K, Parkin G, Rheingold AL, Haggerty BS (1993) J Inorg Biochem 49:105

    Google Scholar 

  24. Bergquist C, Parkin G (1999) Inorg Chem 38:422

    Google Scholar 

  25. Lipton AS, Wright TA, Bowman MK, Reger DL, Ellis PD (2002) J Am Chem Soc 124:5850

    Google Scholar 

  26. Olivier JD, Mullica DF, Hutchinson BB, Milligan WO (1980) Inorg Chem 19:165

    Google Scholar 

  27. Jesson JP, Trofimenko S, Eaton DR (1967) J Am Chem Soc 89:3158

    Google Scholar 

  28. Jesson JP, Weiher JF, Trofimenko S (1968) J Chem Phys 48:2058

    Google Scholar 

  29. Hutchinson BB, Daniels L, Henderson E, Neill P, Long GJ, Becker LW (1979) J Chem Soc Chem Commun 1003

    Google Scholar 

  30. Grandjean F, Long GJ, Hutchinson BB, Ohlhausen L, Neill P, Holcomb JD (1989) Inorg Chem 28:4406

    Google Scholar 

  31. Long GJ, Hutchinson BB (1987) Inorg Chem 26:608

    Google Scholar 

  32. Litterst FJ, Amthauer G (1984) Phys Chem Miner 10:250

    Google Scholar 

  33. Grandjean F (1988) In: Long GJ, Grandjean F (eds) The Time Domain in Surface and Structural Dynamics. Kluwer Academic, Boston, MA, pp 287–308

    Google Scholar 

  34. Maeda Y, Tsutsumi N, Takashima Y (1984) Inorg Chem 23:2440

    Google Scholar 

  35. Maeda Y, Oshio H, Takashima Y, Mikuriya M, Hidaka M (1986) Inorg Chem 25:2958

    Google Scholar 

  36. Adler P, Spiering H, Gütlich P (1987) Inorg Chem 26:3840

    Google Scholar 

  37. Spiering H, Meissner E, Köppen H, Müller EW, Gütlich P (1982) Chem Phys 68:65

    Google Scholar 

  38. Hannay C, Hubin-Franskin M-J, Grandjean F, Briois V, Itié JP, Polian A, Trofimenko S, Long GJ (1997) Inorg Chem 36:5580

    Google Scholar 

  39. Briois V, Sainctavit P, Long GJ, Grandjean F (2001) Inorg Chem 40:912

    Google Scholar 

  40. Pebler J (1983) Inorg Chem 22:4125

    Google Scholar 

  41. Fung S, Drickamer HG (1969) J Chem Phys 51:4353

    Google Scholar 

  42. Fisher DC, Drickamer HG (1971) J Chem Phys 54:4825

    Google Scholar 

  43. Bargeron CB, Drickamer HG (1971) J Chem Phys 55:3471

    Google Scholar 

  44. Long GJ (unpublished results)

    Google Scholar 

  45. Reger DL, Little CA, Rheingold AL, Lam M, Concolino T, Mohan A, Long GJ (2000) Inorg Chem 39:4674

    Google Scholar 

  46. Reger DL, Little CA, Rheingold AL, Lam M, Liable-Sands LM, Rhagitan B, Mohan A, Long GJ, Briois V, Grandjean F (2001) Inorg Chem 40:1508

    Google Scholar 

  47. Reger DL, Little CA, Young V, Pink M (2001) Inorg Chem 40:2870

    Google Scholar 

  48. Reger DL, Little CA, Smith MD, Long GJ (2002) Inorg Chem 41:4453

    Google Scholar 

  49. Reger DL, Little CA, Smith MD, Rheingold AL, Lam KC, Concolino TL, Long GJ, Hermann RP, Grandjean F (2002) Eur J Inorg Chem 2002:1190

    Google Scholar 

  50. Piquer C, Grandjean F, Mathon O, Pascarelli S, Reger DL, Little CA, Long GJ (2003) Inorg Chem 42:982

    Google Scholar 

  51. Janiak C, Scharmann TG, Bräuniger T, Holubová J, Nádvorník M (1998) Z Anorg Allg Chem 624:769

    Google Scholar 

  52. Beattie JK, Sutin N, Turner DH, Flynn GW (1973) J Am Chem Soc 95:2052

    Google Scholar 

  53. Beattie JK, Binstead RA, West RW (1978) J Am Chem Soc 100:3044

    Google Scholar 

  54. Binstead RA, Beattie JK (1986) Inorg Chem 25:1481

    Google Scholar 

  55. Buchen T, Gütlich P (1995) Inorg Chim Acta 231:221

    Google Scholar 

  56. Sohrin Y, Kokusen H, Matsui M (1995) Inorg Chem 34:3928

    Google Scholar 

  57. Bruno G, Centineo G, Ciliberto E, DiBella S, Fragalà I (1984) Inorg Chem 23:1832

    Google Scholar 

  58. Gulino A, Ciliberto E, DiBella S, Fragalà I (1993) Inorg Chem 23:1832

    Google Scholar 

  59. McGarvey JJ, Toftlund H, Al-Obaidi AHR, Taylor KP, Bell SEJ (1993) Inorg Chem 22:2469

    Google Scholar 

  60. Reger DL, Elgin JD, Smith MD (unpublished results)

    Google Scholar 

  61. Reger DL, Little CA, Rheingold AL, Sommer R, Long GJ (2001) Inorg Chim Acta 316:65

    Google Scholar 

Download references

Acknowledgements

One of the authors, G.J.L., would like to thank Professor B. B. Hutchinson and Dr. Swiatoslaw “Jerry” Trofimenko for many stimulating discussions over the course of twenty-five years of working together studying various pyrazolylborate complexes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary J. Long .

Editor information

P. Gütlich H.A. Goodwin

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Long, G.J., Grandjean, F., Reger, D.L. Spin Crossover in Pyrazolylborate and Pyrazolylmethane Complexes. In: Gütlich, P., Goodwin, H. (eds) Spin Crossover in Transition Metal Compounds I. Topics in Current Chemistry, vol 233. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b13530

Download citation

  • DOI: https://doi.org/10.1007/b13530

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40394-4

  • Online ISBN: 978-3-540-44981-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics