Skip to main content

Environmental Degradation of Polyethylene

  • Chapter
Book cover Long Term Properties of Polyolefins

Part of the book series: Advances in Polymer Science ((POLYMER,volume 169))

Abstract

The environmental degradation of polyethylene proceeds by synergistic action of photo- and thermo-oxidative degradation and biological activity. Since biodegradation of commercial high molecular weight polyethylene proceeds slowly, abiotic oxidation is the initial and rate-determining step. Enhanced environmentally degradable polyethylene is prepared by blending with biodegradable additives or photo-initiators or by copolymerisation. One of the key questions for successful development and use of environmentally degradable polymers is to understand the interaction between degradation products and nature. Polymer fragments and degradation products should be environmentally assimilable and should not accumulate or negatively affect the environment. Determination of abiotic and biotic oxidation products is an important step towards establishing the environmental degradation mechanism and environmental impact of the material. More than 200 different degradation products including alkanes, alkenes, ketones, aldehydes, alcohols, carboxylic acid, keto-acids, dicarboxylic acids, lactones and esters have been identified in thermo- and photo-oxidised polyethylene. In biotic environment these abiotic oxidation products and oxidised low molecular weight polymer can be assimilated by microorganisms. In future we will probably see a development of new polyethylenes with tailor-made structures specially designed for environmental degradation through different pathways. Paralleled with the development of these new materials we need to obtain better understanding of the environmental impact of degradable polymers and the interactions between nature and degradation products in a dynamic system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

BHT :

Butylated hydroxy toluene

E/CO :

Ethylene-carbon monoxide

FTIR :

Fourier transform infrared spectroscopy

HDPE :

High density polyethylene

LDPE :

Low density polyethylene

LDPE-MB :

Polyethylene modified with masterbatch

LDPE-PO :

Polyethylene modified with pro-oxidants

LDPE-starch :

Polyethylene modified with starch

Mn :

Number average molecular weight

Mw :

Weight average molecular weight

NMR :

Nuclear magnetic resonance

PP :

Polypropylene

PS :

Polystyrene

PVA :

Polyvinyl alcohol

PVC :

Polyvinyl chloride

SBS :

Styrene-butadiene copolymer

SEM :

Scanning electron microscopy

UF :

Urea formaldehyde resin

UV :

Ultraviolet light

XRF :

X-ray fluorescence

References

  1. Scott G (1999) Macromol Symp 144:113

    Google Scholar 

  2. Wasserbauer R, Beranová M, Vancurová D, Dolezcl (1990) Biomaterials 11:36

    Google Scholar 

  3. Heskins M, Guillet JE (1968) Macromolecules 1:97

    Google Scholar 

  4. Harlan G, Kmiec C (1995) Ethylene-carbon monoxide copolymers. In: Scott G, Gilead D (eds) Degradable polymers: principles and applications. Chapman & Hall, London, chap 8

    Google Scholar 

  5. Guillet JE (1973) US Patent 3 753 952

    Google Scholar 

  6. Guillet JE (1973) Polymers with controlled life times. In: Guillet JE (ed) Polymers and ecological problems. Plenum, New York, p 1

    Google Scholar 

  7. Guillet JE (1974) US Patent 3 811 931

    Google Scholar 

  8. Amin MU, Scott G (1974) Eur Polym J 10:1019

    Google Scholar 

  9. Scott G (1973) Delayed action photo-activator for the degradation of packaging polymers. In: Guillet JE (ed) Polymers and ecological problems. Plenum, New York, p 27

    Google Scholar 

  10. Scott G (1975) Polym Age 6:54

    Google Scholar 

  11. Scott G (1972) British Patent 1 436 553

    Google Scholar 

  12. Scott G (1978) US Patent 4 121 025

    Google Scholar 

  13. Gilead D, Scott G (1978) British Patent 1 586 344

    Google Scholar 

  14. Al-Malaika S, Marogi AM, Scott G (1986) J Appl Polym Sci 31:685

    Google Scholar 

  15. Griffin GJL (1974) British Patent 55195/73

    Google Scholar 

  16. Griffin GJL (1974) Biodegradable fillers in thermoplastics. Adv Chem Ser 134:159

    Google Scholar 

  17. Griffin GJL (1988) Int Patent WO 88/9354

    Google Scholar 

  18. Otey FH, Mark AM, Mehltretter CL, Russell CR (1974) Ind Eng Chem Prod Res Dev 13:90

    Google Scholar 

  19. Otey FH, Westhoff RP, Doane WM (1980) Ind Eng Chem Prod Res Dev 19:592

    Google Scholar 

  20. Moad G (1999) Prog Polym Sci 24:81

    Google Scholar 

  21. Yoo Y-D, Kim Y-W, Cho W-Y (1995) US Patent 5 461 094

    Google Scholar 

  22. Tudorachi N, Rusu M, Cascaval CN, Constantin L, Rugina V (2000) Cellulose Chem Technol 34:101

    Google Scholar 

  23. Mikulasova M, Kosiková B, Alexy P, Kacik F, Urgelová E (2001) World J Microbiol Biotechnol 17:601

    Google Scholar 

  24. Tilstra L, Johnsonbaugh D (1993) J Environ Polym Degrad 1:257

    Google Scholar 

  25. Kim J, Kim JH, Shin TK, Choi HJ, Jhon MS (2001) Eur Polym J 37:2131

    Google Scholar 

  26. Labuzek S, Pajak J, Nowak B, Majdiuk E, Karcz J (2002) Polimery 47:256

    Google Scholar 

  27. Bailey WJ, Gapud B (1985) Synthesis of biodegradable polyethylene. In: Klemchuk PP (ed) Polymer degradation and stabilization (ACS symposium series 280). ACS, Washington DC, p 423

    Google Scholar 

  28. Bailey WJ, Kuruganti VK (1990) Polym Mater Sci Eng 62:971

    Google Scholar 

  29. Austin RG (1994) US Patent 5 281 681

    Google Scholar 

  30. Austin RG (1994) US Patent 5 334 700

    Google Scholar 

  31. Holmström A, Sörvik E (1974) J Appl Polym Sci 18:3153

    Google Scholar 

  32. Hoff A, Jacobsson S (1981) J Appl Polym Sci 26:3409

    Google Scholar 

  33. Madsen J, Olsen NB, Atlung G (1985) Polym Degrad Stab 12:131

    Google Scholar 

  34. Bravo A, Hotchkiss JH, Acree TE (1992) J Agric Food Chem 40:1881

    Google Scholar 

  35. Andersson T, Wesslén B, Sandström J (2002) J Appl Polym Sci 86:1580

    Google Scholar 

  36. Billingham NC, Calvert PD (1982) In: Scott G (ed) Developments in polymer stabilisation -5. Applied Science, London, chap 5

    Google Scholar 

  37. Hakkarainen M, Albertsson A-C, Karlsson S (1996) J Chromatogr A 741:251

    Google Scholar 

  38. Hakkarainen M, Albertsson A-C, Karlsson S (1997) J Appl Polym Sci 66:959

    Google Scholar 

  39. van Sickle DE, Mill T, Mayo FR, Richardsson H, Gould CW (1973) J Org Chem 38:4435

    Google Scholar 

  40. Hendry DG, Gould CW, Schuetzle D, Syz MG, Mayo FR (1976) J Org Chem 41:1

    Google Scholar 

  41. Chien JCW (1968) J Polym Sci Part A-1 6:375

    Google Scholar 

  42. Iring M, Kelen T, Tüdös F (1974) Makromol Chem 175:467

    Google Scholar 

  43. Iring M, Kelen T, Tüdös F, Laszlo-Hedvig Zs (1976) J Polym Sci Symp 57:89

    Google Scholar 

  44. Gugumus F (1995) Polym Degrad Stab 49:29

    Google Scholar 

  45. Holmström A, Sörvik E (1978) J Polym Sci Polym Chem 16:2555

    Google Scholar 

  46. Gugumus F (1990) Angew Makromol Chem 182:111

    Google Scholar 

  47. Iring M, Tüdös F (1990) Prog Polym Sci 15:217

    Google Scholar 

  48. Tidjani A, Watanabe Y (1995) Polym Degrad Stab 49:299

    Google Scholar 

  49. Scott G (1995) Introduction to the abiotic degradation of carbon chain polymers. In: Scott G, Gilead D (eds) Degradable polymers: principles and applications. Chapman & Hall, London, chap 1

    Google Scholar 

  50. Carlsson DJ, Brousseau R, Zhang C, Wiles DM (1987) Polym Degrad Stab 17:303

    Google Scholar 

  51. Lacoste J, Carlsson DJ, Falicki S, Wiles DM (1991) Polym Degrad Stab 34:309

    Google Scholar 

  52. Albertsson A-C, Barenstedt C, Karlsson S (1992) Polym Degrad Stab 37:163

    Google Scholar 

  53. Sung W, Nikolov ZL (1992) Ind Eng Chem Res 31:1332

    Google Scholar 

  54. Breslin VT (1993) J Environ Polym Degrad 1:127

    Google Scholar 

  55. Johnson KE, Pometto III AL, Nikolov ZL (1993) Appl Environ Microbiol 59:1155

    Google Scholar 

  56. Weiland M, David C (1994) Polym Degrad Stab 45:371

    Google Scholar 

  57. Potts JE, Clendinning RA, Ackart WB, Niegisch WD (1973) The biodegradability of synthetic polymers. In: Guillet JE (ed) Polymers and ecological problems. Plenum, New York, p 61

    Google Scholar 

  58. Potts JE (1978) Biodegradation. In: Jellinek HHG (ed) Aspects of degradation and stabilization of polymers. Elsevier, Amsterdam, p 617

    Google Scholar 

  59. Haines JR, Alexander M (1974) Appl Microbiol 28:1084

    Google Scholar 

  60. Albertsson A-C (1978) J Appl Polym Sci 22:3419

    Google Scholar 

  61. Albertsson A-C, Rånby B (1979) IUPAC International symposium on long-term properties of polymer materials. Stockholm, Sweden. Appl Polym Symp 35:423

    Google Scholar 

  62. Albertsson A-C, Banhidi ZG, Beyer-Ericsson LL (1978) J Appl Polym Sci 22:3434

    Google Scholar 

  63. Albertsson A-C, Banhidi ZG (1980) J Appl Polym Sci 25:1655

    Google Scholar 

  64. Albertsson A-C (1980) Eur Polym J 16:623

    Google Scholar 

  65. Albertsson A-C, Karlsson S (1988) J Appl Polym Sci 35:1289

    Google Scholar 

  66. Albertsson A-C (1989) The synergism between biodegradation of polyethylenes and environmental factors. In: Patsis A (ed) Advances in stabilization and degradation of polymers. Technomic, Lancaster, p 115

    Google Scholar 

  67. Karlsson S, Ljungqvist O, Albertsson A-C (1988) Polym Degrad Stab 21:237

    Google Scholar 

  68. Albertsson A-C (1977) Studies on mineralization of14C labelled polyethylenes in aerobic biodegradation and aqueous aging. PhD Thesis, Royal Institute of Technology, Stockholm, Sweden

    Google Scholar 

  69. Albertsson A-C, Andersson SO, Karlsson S (1987) Polym Degrad Stab 18:73

    Google Scholar 

  70. Weiland M, David C (1995) Polym Degrad Stab 48:275

    Google Scholar 

  71. Albertsson A-C, Erlandsson B, Hakkarainen M, Karlsson S (1998) J Environ Polym Degrad 6:187

    Google Scholar 

  72. Volke-Sepúlveda T, Favela-Torres E, Manzur-Guzmán A, Limón-González M, Trejo-Quintero G (1999) J Appl Polym Sci 73:1435

    Google Scholar 

  73. Erlandsson B, Albertsson A-C, Karlsson S (1998) Acta Polym 49:363

    Google Scholar 

  74. Pometto AL, Johnson KE, Kim M (1993) J Environ Polym Degrad 1:213

    Google Scholar 

  75. Griffin GJL (1976) J Polym Sci Symp 57:281

    Google Scholar 

  76. Chiellini E, Cioni F, Solaro R, Vallini G, Corti A, Pera A (1993) J Environ Polym Degrad 1:167

    Google Scholar 

  77. Vallini G, Corti A, Pera A, Solaro R, Cioni F, Chiellini E (1994) J Gen Appl Microbiol 40:445

    Google Scholar 

  78. Gilmore DF, Antoun S, Lenz RW, Goodwin S, Austin R, Fuller RC (1992) J Ind Microbiol 10:199

    Google Scholar 

  79. Goheen SM, Wool RP (1991) J Appl Polym Sci 42:2691

    Google Scholar 

  80. Greizerstein HB, Syracuse JA, Kostyniak PJ (1993) Polym Degrad Stab 39:251

    Google Scholar 

  81. David C, Trojan M, Daro A, Demarteau W (1992) Polym Degrad Stab 37:233

    Google Scholar 

  82. Andrady AL, Pegram JE, Song Y (1993) J Environ Polym Degrad 1:117

    Google Scholar 

  83. Tidjani A, Arnaud R (1993) Polym Degrad Stab 39:285

    Google Scholar 

  84. Hamid SH, Amin MB (1995) J Appl Polym Sci 55:1385

    Google Scholar 

  85. Breslin VT, Swanson RL (1993) J Air Waste Manage Assoc 43:325

    Google Scholar 

  86. Leonas KK, Gorden RW (1993) J Environ Polym Degrad 1:45

    Google Scholar 

  87. Gonsalves KE, Patel SH, Chen X (1991) J Appl Polym Sci 43:405

    Google Scholar 

  88. Breslin VT, Li BE (1993) J Appl Polym Sci 48:2063

    Google Scholar 

  89. Arnaud P, Dabin P, Lemaire J, Al-Malaika S, Chohan S, Coker M, Scott G, Fauve A, Maaroufi A (1994) Polym Degrad Stab 46:211

    Google Scholar 

  90. Yamada-Onodera K, Mukumoto H, Katsuyaya Y, Saiganji A, Tani Y (2001) Polym Degrad Stab 72:323

    Google Scholar 

  91. Spencer LM, Heskins M, Guillet JE (1976) Studies on the biodegradability of photodegraded polymers: identification of bacterial types. In: Sharpley JM, Kaplan AM (eds) Proc 3rd Int Biodegrad Symp. Applied Science, London, p 753

    Google Scholar 

  92. Jones PH, Prasad D, Heskins N, Morgan NH, Guillet JE (1974) Environ Sci Technol 8:919

    Google Scholar 

  93. Otake Y, Kobayashi T, Asabe H, Murakami N, Ono K (1995) J Appl Polym Sci 56:1789

    Google Scholar 

  94. Otake Y, Kobayashi T, Asabe H, Murakami N, Ono K (1998) J Appl Polym Sci 70:1643

    Google Scholar 

  95. Karlsson S, Hakkarainen M, Albertsson A-C (1997) Macromolecules 30:7721

    Google Scholar 

  96. Hakkarainen M, Albertsson A-C, Karlsson S (1997) J Environ Polym Degrad 5:67

    Google Scholar 

  97. Khabbaz F, Albertsson A-C, Karlsson S (1998) Polym Degrad Stab 61:329

    Google Scholar 

  98. Khabbaz F, Albertsson A-C, Karlsson S (1999) Polym Degrad Stab 63:127

    Google Scholar 

  99. Khabbaz F, Albertsson A-C (2000) Biomacromolecules 1:665

    Google Scholar 

  100. Iring M, Tüdös F, Fodor ZS, Kelen T (1980) Polym Degrad Stab 2:143

    Google Scholar 

  101. Tüdös F, Iring M (1998) Acta Polym 39:19

    Google Scholar 

  102. Geuskens G, Kabamba MS (1983) Polym Degrad Stab 5:399

    Google Scholar 

  103. Adams JH (1970) J Polym Sci A-1 8:1077

    Google Scholar 

  104. Lacoste J, Carlsson DJ, Falicki S, Wiles DM (1991) Polym Degrad Stab 34:309

    Google Scholar 

  105. Lacoste J, Arnaud R, Singh P, Lemaire J (1988) Makromol Chem 189:651

    Google Scholar 

  106. Albertsson A-C, Barenstedt C, Karlsson S (1994) Acta Polym 45:97

    Google Scholar 

  107. Albertsson A-C, Barenstedt C, Karlsson S (1995) J Chromatogr A 690:207

    Google Scholar 

  108. Eggins HOW, Mills J, Holt A, Scott G (1971) Biodeterioration and biodegradation of synthetic polymers. In: Sykes G, Skinner FA (eds) Microbial aspects of pollution. Academic Press, London, p 267

    Google Scholar 

  109. Mills J, Eggins HOW (1970) Int Biodetn Bull 6:13

    Google Scholar 

  110. Cornell JH, Kaplan AM, Rogers MR (1984) J Appl Polym Sci 29:2581

    Google Scholar 

  111. Albertsson A-C, Barenstedt C, Karlsson S, Lindberg T (1995) Polymer 36:3075

    Google Scholar 

  112. Schlegel HG (1979) Allgemeine Mikrobiologie. Georg Thieme, Stuttgart

    Google Scholar 

  113. Pagga U (1999) Appl Microbiol Biotechnol 51:125

    Google Scholar 

  114. Gilead D (1995) The disposal of mulching films after use. In: Scott G, Gilead D (eds) Degradable polymers: principles and applications. Chapman & Hall, London, chap 10

    Google Scholar 

  115. Scott G (1999) Polymers and the environment. Royal Society of Chemistry, Cambridge, chap 5

    Google Scholar 

  116. Fabbri A (1995) The role of degradable polymers in agricultural systems. In: Scott G, Gilead D (eds) Degradable polymers: principles and applications. Chapman & Hall, London, chap 11

    Google Scholar 

  117. Lee J-A, Kim M-N (2001) J Polym Environ 9:91

    Google Scholar 

  118. Tuominen J, Kylmä J, Kapanen A, Venelampi O, Itävaara M, Seppälä J (2002) Biomacromolecules 3:445

    Google Scholar 

  119. Kinnersley AM, Scott III TC, Yopp JH, Whitten GH (1990) Plant Growth Regul 9:137

    Google Scholar 

  120. Scott G (2000) Polym Degrad Stab 68:1

    Google Scholar 

  121. Scott G, Wiles DM (2001) Biomacromolecules 2:615

    Google Scholar 

  122. Hakkarainen M, Albertsson A-C, Karlsson S (2000) Polymer 41:2331

    Google Scholar 

  123. Hakkarainen M, Albertsson A-C (2002) Macromol Chem Phys 203:1357

    Google Scholar 

Download references

Acknowledgements

Prof. G. Scott is thanked for his comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann-Christine Albertsson .

Editor information

Ann-Christine Albertsson

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Hakkarainen, M., Albertsson, AC. Environmental Degradation of Polyethylene. In: Albertsson, AC. (eds) Long Term Properties of Polyolefins. Advances in Polymer Science, vol 169. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b13523

Download citation

  • DOI: https://doi.org/10.1007/b13523

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40769-0

  • Online ISBN: 978-3-540-45196-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics