Skip to main content

Synchrotron Radiation Direct Photo Etching of Polymers

  • Chapter
Polymers and Light

Part of the book series: Advances in Polymer Science ((POLYMER,volume 168))

Abstract

In this article, we review studies on the direct photoetching of polymers with synchrotron radiation (SR) in vacuum. The SR etching of poly(tetrafluoroethylene) (also called Teflon) has been applied as a microfabrication process to create high aspect ratio microstructures and to deposit high-quality thin films. This process appears rather similar to x-ray proximity lithography in view of exposure optics and similar to laser ablation in view of photoprocessing; thus, both x-ray lithography and laser ablation will often be mentioned for comparison throughout the review. In order for readers to be familiar with x-ray processing, x-ray lithography will first be introduced before synchrotron radiation is discussed as the light source compared to lasers. Microfabrication, like microstructuring and thin film deposition by using SR etching, will be reviewed and compared with results of deep x-ray lithography and laser ablation deposition. Then the dissociation mechanism involved will be discussed for two photoprocessing procedures, namely SR etching and laser ablation. Finally, as an application example for microfabrication, x-ray refractive single lenses made of Teflon using the SR etching technique will be presented.

This article is dedicated to a late colleague, T. Takayama, who introduced the ingenius idea of injecting high-energy electrons into the world’s smallest SR ring, realizing a storage ring without straight sections and without magnetic quadrupoles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Smith HI (1995) J Vac Sci Technol B12:2323

    Google Scholar 

  2. Ueno N, Konishi S, Tanimoto K, Sugita K (1981) Jpn J Appl Phys 20: L709

    Google Scholar 

  3. Yamada H, Hori M, Morita S, Hattori S (1988) J Electrochem Soc 135:966

    Google Scholar 

  4. Ogawa T, Yamagushi A, Soga T, Tachibana H, Matsumoto M, Oizumi H, Takeda E (1994) Jpn J Appl Phys 33:1577

    Google Scholar 

  5. Srinivasan R, Braren B (1989) Chem Rev 89:1303

    Google Scholar 

  6. Srinivasan R, Mayne-Banton V (1982) Appl Phys Lett 41:576

    Google Scholar 

  7. Zhang Y, Katoh T, Washio M, Yamada H, Hamada S (1995) Appl Phys Lett 67:872

    Google Scholar 

  8. Urisu T, Kyuragi H (1987) J Vac Sci Technol B5:1436

    Google Scholar 

  9. Kyuragi H, Urisu T (1987) Appl. Phys Lett 50:1254

    Google Scholar 

  10. Srinivasan R, Leigh WJ (1982): J Am Chem Soc 104:6784

    Google Scholar 

  11. Nakanishi K, Suzuki H, Katoh T, Imai S, Nakayama Y, Miki H (1999) Jpn J Appl Phys 38:863

    Google Scholar 

  12. Kawamura Y, Tokyoda K, Namba S (1982) Appl Phys Lett 40:374

    Google Scholar 

  13. Levi BG (1991) Phys Today October:17

    Google Scholar 

  14. Menz W, Bley W (1993) Mikrosystemtechnik für ingenieure. VCH, Weinheim

    Google Scholar 

  15. Hirose S, Miyatake T, Li X, Toyota E, Hirose M, Fujii K, Suzuki K (2000) J Vac Sci Technol B18:2986

    Google Scholar 

  16. Yang J, Toyota E, Kawachi S (1998) Jpn J Appl Phys 37:6804

    Google Scholar 

  17. Itani T, Yoshino H, Fujimoto M, Kasama K (1995) NEC Report 48:197

    Google Scholar 

  18. Miyatake T, Li X, Hirose S, Monzen T, Fujii K, Suzuki K (2001) J Vac Sci Technol B19:2444

    Google Scholar 

  19. Deguchi K (1997) PhD thesis, University of Tokyo

    Google Scholar 

  20. Khan M, Han G, Tsvid G, Kitayama T, Maldonado J, Cerrina F (2001) J Vac Sci Technol B19:2423

    Google Scholar 

  21. Toyoda E, Hori T (2001) J Vac Sci Technol B19:2428

    Google Scholar 

  22. 22 Fritze M, Burns J, Wyatt PW, Chen CK, Gouker P, Chen CL, Kease C, Astolfi, D, Yost D, Preble D, Curtis A, Davis P, Cann S, Deneault S, Liu HY (2000) J Vac Sci Technol B18:2886

    Google Scholar 

  23. Chen W, Ahmed H (1993) J Vac Sci Technol B11:2519

    Google Scholar 

  24. Seki A, Tanaka H, Ohta T (1990) Phys Scr 41:167

    Google Scholar 

  25. Küper S, Stuke M (1989) Appl Phys A49:211

    Google Scholar 

  26. Zhang Y, Katoh T, Amano D (2002) Microsyst Technol 8:99

    Google Scholar 

  27. Basting D, Sowada U, Voß F, Oesterlin P (1991) SPIE 1412:80

    Google Scholar 

  28. Küper S, Stuke M (1989) Appl Phys Lett 54:4

    Google Scholar 

  29. Katoh T, Zhang Y (1998) J Synchrotron Rad 5:1153

    Google Scholar 

  30. Manohara HM, Morikawa E, Choi J, Sprunger PT (1999) J Microelectromech Syst 8:417

    Google Scholar 

  31. Katoh T, Zhang Y (1998) Microsyst Technol 4:135

    Google Scholar 

  32. Akazawa H, Utsumi Y, Takahashi J, Urisu T (1990) Appl Phys Lett 57:2302

    Google Scholar 

  33. Masui S, Amano D, Katoh T, Zhang Y, Yamada H (1995) Rev Sci Instrum 66:2352

    Google Scholar 

  34. Zhang Y, Katoh T (1996) Jpn J Appl Phys 35:L186

    Google Scholar 

  35. Nishi N, Katoh T, Ueno H, Sugiyama S (2000) Memoirs of the SR Center, Ritsumeikan University 2:29

    Google Scholar 

  36. Single JG, Muus LT, Lin, TP, Larsen HA (1964) J Vac Sci Technol A 12:681

    Google Scholar 

  37. Zhang Y, Hori T (2000) Synchrotron Radiation News 13:32

    Google Scholar 

  38. Nishi N, Katoh T, Ueno H, Sugiyama S (2002) Microsyst Technol 9:1

    Google Scholar 

  39. Katoh T, Yamaguchi D, Satoh Y, Ikeda S, Aoki Y, Washio M, Tabata Y (2002) Appl Surf Sci 186:24

    Google Scholar 

  40. Oshima A, Tabata Y, Kudoh H, Seguchi T (1995) Radiat Phys Chem 45:269

    Google Scholar 

  41. Willians KR, Muller RS (1996) J Microelectromech Syst 5:256

    Google Scholar 

  42. Inayoshi M, Ito M, Hori M, Goto T (1999) J Vac Sci Technol B 17:949

    Google Scholar 

  43. Küper S (1989) PhD thesis, University of Göttingen

    Google Scholar 

  44. Preuß S (1993) PhD thesis, University of Göttingen

    Google Scholar 

  45. Harvey E, Rumksy P, Gower M, Remnant J (1995) SPIE 2639:266

    Google Scholar 

  46. Lazare S, Lopez J, Weisbuch F (1999) Appl Phys A 69:S1

    Google Scholar 

  47. Zhang Y, Lowe RM, Harvey E, Hannaford P, Endo A (2002) Appl Surf Sci 186:345

    Google Scholar 

  48. Preuss S, Späth M, Zhang Y, Stuke M (1993) Appl Phys Lett 62:3049

    Google Scholar 

  49. Sasuga T, Hayakawa N, Yoshida K, Hagiwara M (1985) Polymer 26:1039

    Google Scholar 

  50. Wittmann JC, Smith P (1991) Nature 352:414

    Google Scholar 

  51. Nason TC, Moore JA, Lu TM (1992) Appl Phys Lett 60:1866

    Google Scholar 

  52. Quaranta F, Valentini A, Favia P, Lamendola R, d’Agostino R (1993) Appl Phys Lett 63:10

    Google Scholar 

  53. Hansen SG, Robitaille TE (1988) Appl Phys Lett 52:81

    Google Scholar 

  54. Blanchet GB, Shah SI (1993) Appl Phys Lett 62:1026

    Google Scholar 

  55. Ueno Y, Fujii T, Kannari F (1994) Appl Phys Lett 65:1370

    Google Scholar 

  56. Katoh T, Zhang Y (1996) Appl Phys Lett 68:865

    Google Scholar 

  57. Katoh T, Zhang Y (1999) Appl Surf Sci 138–139:165

    Google Scholar 

  58. Zhang Y, Katoh T, Endo A (2000) J Phys Chem B 104:6212

    Google Scholar 

  59. Usui H, Koshikawa H, Tanaka K (1995) J Vac Sci Technol A 13:2318

    Google Scholar 

  60. Blanchet GB, Fincher CRJr, Jackson FL, Shah SI, Gardner KH (1993) Science 262:719

    Google Scholar 

  61. Starkweatherm Jr HW (1986) Macromolecules 19:1131

    Google Scholar 

  62. Hoffmann FM (1983) Surf Sci Rep 3:107

    Google Scholar 

  63. Kobayashi M, Sakashita M, Adachi T, Kobayashi M (1993) Macromolecules 28:316

    Google Scholar 

  64. Symons NKJ (1963) J Polymer Sci A 1:2843

    Google Scholar 

  65. Wunderlich B (1968) Adv Polymer Sci 5:568

    Google Scholar 

  66. Folda T, Hoffmann H, Chanzy H, Smith P (1988) Nature 333:565

    Google Scholar 

  67. Schwickert H, Strobl G, Kimmig M (1991) J Chem Phys 95:2800

    Google Scholar 

  68. Strobl G (1996) The physics of polymers. Springer, Berlin Heidelberg New York

    Google Scholar 

  69. Kimmig M, Strobl G, Stühn B (1994) Macromolecules 27:2481

    Google Scholar 

  70. Domen K, Chuang TJ (1987) Phys Rev Lett 59:1484

    Google Scholar 

  71. Zhigilei LV, Kodali, PBS, Garrison BJ (1998) J Phys Chem B 102:2845

    Google Scholar 

  72. Wheeler DR, Pepper SV (1982) J Vac Sci Technol 20:226

    Google Scholar 

  73. Simons JK, Frigo SP, Taylor JW, Rosenberg RA (1994) J Vac Sci Technol A 12:681

    Google Scholar 

  74. Wheeler DR, Pepper SV (1990) J Vac Sci Technol A 8:4046

    Google Scholar 

  75. Wada S, Tashiro H, Toyoda K, Niino H, Yabe A (1993) Appl Phys Lett 63:211

    Google Scholar 

  76. Oshima A, Ikeda S, Katoh E, Tabata Y (2001) Radiat Phys Chem 62:39

    Google Scholar 

  77. Katan E, Narikis M, Siegmann A (1998) J Appl Polym Sci 70:1471

    Google Scholar 

  78. Rosenberg Y, Siegmann A, Narkis M, Shkolnik S (1991) J Appl Polym Sci 43:535

    Google Scholar 

  79. Torrisi L, Ciavola G, Percolla R, Benyaich F (1996) Nucl Instrum Methods Phys Res B 116:473

    Google Scholar 

  80. Timmerman R, Greyson W (1962) J Vac Sci Technol 6:456

    Google Scholar 

  81. Tomie T (1994) US Patent 5,594,773

    Google Scholar 

  82. Snigirev A, Kohn I, Snigireva I, Lengeler B (1996) Nature 384:49

    Google Scholar 

  83. Lengeler B, Snigirev A, Snigireva I, Raven C (1998) J Appl Phys 84:5855

    Google Scholar 

  84. Yang BX (1993) Nucl Instrum Methods Phys Res A 328:578

    Google Scholar 

  85. Snigirev A, Kohn I, Snigireva I, Souvorov A, Lengeler B (1998) Appl Opt 37:653

    Google Scholar 

  86. Zhang Y, Katoh T, Kagoshima Y, Matui J, Tsusaka Y (2001) Jpn J Appl Phys 40:L705

    Google Scholar 

  87. Dhez P, Chevallier P, Lucatorto TB, Tarrio C (1999) Rev Sci Instrum 70:1907

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Zhang .

Editor information

Thomas. K. Lippert

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Zhang, Y. Synchrotron Radiation Direct Photo Etching of Polymers. In: Lippert, T. (eds) Polymers and Light. Advances in Polymer Science, vol 168. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b12684

Download citation

  • DOI: https://doi.org/10.1007/b12684

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40471-2

  • Online ISBN: 978-3-540-45041-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics