Advertisement

Synchrotron Radiation Direct Photo Etching of Polymers

  • Y. ZhangEmail author
Part of the Advances in Polymer Science book series (POLYMER, volume 168)

Abstract

In this article, we review studies on the direct photoetching of polymers with synchrotron radiation (SR) in vacuum. The SR etching of poly(tetrafluoroethylene) (also called Teflon) has been applied as a microfabrication process to create high aspect ratio microstructures and to deposit high-quality thin films. This process appears rather similar to x-ray proximity lithography in view of exposure optics and similar to laser ablation in view of photoprocessing; thus, both x-ray lithography and laser ablation will often be mentioned for comparison throughout the review. In order for readers to be familiar with x-ray processing, x-ray lithography will first be introduced before synchrotron radiation is discussed as the light source compared to lasers. Microfabrication, like microstructuring and thin film deposition by using SR etching, will be reviewed and compared with results of deep x-ray lithography and laser ablation deposition. Then the dissociation mechanism involved will be discussed for two photoprocessing procedures, namely SR etching and laser ablation. Finally, as an application example for microfabrication, x-ray refractive single lenses made of Teflon using the SR etching technique will be presented.

Keywords

Laser Ablation Scanning Electron Microscopy Picture PTFE Film Synchrotron Radiation Beam Compact Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Smith HI (1995) J Vac Sci Technol B12:2323Google Scholar
  2. 2.
    Ueno N, Konishi S, Tanimoto K, Sugita K (1981) Jpn J Appl Phys 20: L709Google Scholar
  3. 3.
    Yamada H, Hori M, Morita S, Hattori S (1988) J Electrochem Soc 135:966Google Scholar
  4. 4.
    Ogawa T, Yamagushi A, Soga T, Tachibana H, Matsumoto M, Oizumi H, Takeda E (1994) Jpn J Appl Phys 33:1577Google Scholar
  5. 5.
    Srinivasan R, Braren B (1989) Chem Rev 89:1303Google Scholar
  6. 6.
    Srinivasan R, Mayne-Banton V (1982) Appl Phys Lett 41:576Google Scholar
  7. 7.
    Zhang Y, Katoh T, Washio M, Yamada H, Hamada S (1995) Appl Phys Lett 67:872Google Scholar
  8. 8.
    Urisu T, Kyuragi H (1987) J Vac Sci Technol B5:1436Google Scholar
  9. 9.
    Kyuragi H, Urisu T (1987) Appl. Phys Lett 50:1254Google Scholar
  10. 10.
    Srinivasan R, Leigh WJ (1982): J Am Chem Soc 104:6784Google Scholar
  11. 11.
    Nakanishi K, Suzuki H, Katoh T, Imai S, Nakayama Y, Miki H (1999) Jpn J Appl Phys 38:863Google Scholar
  12. 12.
    Kawamura Y, Tokyoda K, Namba S (1982) Appl Phys Lett 40:374Google Scholar
  13. 13.
    Levi BG (1991) Phys Today October:17Google Scholar
  14. 14.
    Menz W, Bley W (1993) Mikrosystemtechnik für ingenieure. VCH, WeinheimGoogle Scholar
  15. 15.
    Hirose S, Miyatake T, Li X, Toyota E, Hirose M, Fujii K, Suzuki K (2000) J Vac Sci Technol B18:2986Google Scholar
  16. 16.
    Yang J, Toyota E, Kawachi S (1998) Jpn J Appl Phys 37:6804Google Scholar
  17. 17.
    Itani T, Yoshino H, Fujimoto M, Kasama K (1995) NEC Report 48:197Google Scholar
  18. 18.
    Miyatake T, Li X, Hirose S, Monzen T, Fujii K, Suzuki K (2001) J Vac Sci Technol B19:2444Google Scholar
  19. 19.
    Deguchi K (1997) PhD thesis, University of TokyoGoogle Scholar
  20. 20.
    Khan M, Han G, Tsvid G, Kitayama T, Maldonado J, Cerrina F (2001) J Vac Sci Technol B19:2423Google Scholar
  21. 21.
    Toyoda E, Hori T (2001) J Vac Sci Technol B19:2428Google Scholar
  22. 22.
    22 Fritze M, Burns J, Wyatt PW, Chen CK, Gouker P, Chen CL, Kease C, Astolfi, D, Yost D, Preble D, Curtis A, Davis P, Cann S, Deneault S, Liu HY (2000) J Vac Sci Technol B18:2886Google Scholar
  23. 23.
    Chen W, Ahmed H (1993) J Vac Sci Technol B11:2519Google Scholar
  24. 24.
    Seki A, Tanaka H, Ohta T (1990) Phys Scr 41:167Google Scholar
  25. 25.
    Küper S, Stuke M (1989) Appl Phys A49:211Google Scholar
  26. 26.
    Zhang Y, Katoh T, Amano D (2002) Microsyst Technol 8:99Google Scholar
  27. 27.
    Basting D, Sowada U, Voß F, Oesterlin P (1991) SPIE 1412:80Google Scholar
  28. 28.
    Küper S, Stuke M (1989) Appl Phys Lett 54:4Google Scholar
  29. 29.
    Katoh T, Zhang Y (1998) J Synchrotron Rad 5:1153Google Scholar
  30. 30.
    Manohara HM, Morikawa E, Choi J, Sprunger PT (1999) J Microelectromech Syst 8:417Google Scholar
  31. 31.
    Katoh T, Zhang Y (1998) Microsyst Technol 4:135Google Scholar
  32. 32.
    Akazawa H, Utsumi Y, Takahashi J, Urisu T (1990) Appl Phys Lett 57:2302Google Scholar
  33. 33.
    Masui S, Amano D, Katoh T, Zhang Y, Yamada H (1995) Rev Sci Instrum 66:2352Google Scholar
  34. 34.
    Zhang Y, Katoh T (1996) Jpn J Appl Phys 35:L186Google Scholar
  35. 35.
    Nishi N, Katoh T, Ueno H, Sugiyama S (2000) Memoirs of the SR Center, Ritsumeikan University 2:29Google Scholar
  36. 36.
    Single JG, Muus LT, Lin, TP, Larsen HA (1964) J Vac Sci Technol A 12:681Google Scholar
  37. 37.
    Zhang Y, Hori T (2000) Synchrotron Radiation News 13:32Google Scholar
  38. 38.
    Nishi N, Katoh T, Ueno H, Sugiyama S (2002) Microsyst Technol 9:1Google Scholar
  39. 39.
    Katoh T, Yamaguchi D, Satoh Y, Ikeda S, Aoki Y, Washio M, Tabata Y (2002) Appl Surf Sci 186:24Google Scholar
  40. 40.
    Oshima A, Tabata Y, Kudoh H, Seguchi T (1995) Radiat Phys Chem 45:269Google Scholar
  41. 41.
    Willians KR, Muller RS (1996) J Microelectromech Syst 5:256Google Scholar
  42. 42.
    Inayoshi M, Ito M, Hori M, Goto T (1999) J Vac Sci Technol B 17:949Google Scholar
  43. 43.
    Küper S (1989) PhD thesis, University of GöttingenGoogle Scholar
  44. 44.
    Preuß S (1993) PhD thesis, University of GöttingenGoogle Scholar
  45. 45.
    Harvey E, Rumksy P, Gower M, Remnant J (1995) SPIE 2639:266Google Scholar
  46. 46.
    Lazare S, Lopez J, Weisbuch F (1999) Appl Phys A 69:S1Google Scholar
  47. 47.
    Zhang Y, Lowe RM, Harvey E, Hannaford P, Endo A (2002) Appl Surf Sci 186:345Google Scholar
  48. 48.
    Preuss S, Späth M, Zhang Y, Stuke M (1993) Appl Phys Lett 62:3049Google Scholar
  49. 49.
    Sasuga T, Hayakawa N, Yoshida K, Hagiwara M (1985) Polymer 26:1039Google Scholar
  50. 50.
    Wittmann JC, Smith P (1991) Nature 352:414Google Scholar
  51. 51.
    Nason TC, Moore JA, Lu TM (1992) Appl Phys Lett 60:1866Google Scholar
  52. 52.
    Quaranta F, Valentini A, Favia P, Lamendola R, d’Agostino R (1993) Appl Phys Lett 63:10Google Scholar
  53. 53.
    Hansen SG, Robitaille TE (1988) Appl Phys Lett 52:81Google Scholar
  54. 54.
    Blanchet GB, Shah SI (1993) Appl Phys Lett 62:1026Google Scholar
  55. 55.
    Ueno Y, Fujii T, Kannari F (1994) Appl Phys Lett 65:1370Google Scholar
  56. 56.
    Katoh T, Zhang Y (1996) Appl Phys Lett 68:865Google Scholar
  57. 57.
    Katoh T, Zhang Y (1999) Appl Surf Sci 138–139:165Google Scholar
  58. 58.
    Zhang Y, Katoh T, Endo A (2000) J Phys Chem B 104:6212Google Scholar
  59. 59.
    Usui H, Koshikawa H, Tanaka K (1995) J Vac Sci Technol A 13:2318Google Scholar
  60. 60.
    Blanchet GB, Fincher CRJr, Jackson FL, Shah SI, Gardner KH (1993) Science 262:719Google Scholar
  61. 61.
    Starkweatherm Jr HW (1986) Macromolecules 19:1131Google Scholar
  62. 62.
    Hoffmann FM (1983) Surf Sci Rep 3:107Google Scholar
  63. 63.
    Kobayashi M, Sakashita M, Adachi T, Kobayashi M (1993) Macromolecules 28:316Google Scholar
  64. 64.
    Symons NKJ (1963) J Polymer Sci A 1:2843Google Scholar
  65. 65.
    Wunderlich B (1968) Adv Polymer Sci 5:568Google Scholar
  66. 66.
    Folda T, Hoffmann H, Chanzy H, Smith P (1988) Nature 333:565Google Scholar
  67. 67.
    Schwickert H, Strobl G, Kimmig M (1991) J Chem Phys 95:2800Google Scholar
  68. 68.
    Strobl G (1996) The physics of polymers. Springer, Berlin Heidelberg New YorkGoogle Scholar
  69. 69.
    Kimmig M, Strobl G, Stühn B (1994) Macromolecules 27:2481Google Scholar
  70. 70.
    Domen K, Chuang TJ (1987) Phys Rev Lett 59:1484Google Scholar
  71. 71.
    Zhigilei LV, Kodali, PBS, Garrison BJ (1998) J Phys Chem B 102:2845Google Scholar
  72. 72.
    Wheeler DR, Pepper SV (1982) J Vac Sci Technol 20:226Google Scholar
  73. 73.
    Simons JK, Frigo SP, Taylor JW, Rosenberg RA (1994) J Vac Sci Technol A 12:681Google Scholar
  74. 74.
    Wheeler DR, Pepper SV (1990) J Vac Sci Technol A 8:4046Google Scholar
  75. 75.
    Wada S, Tashiro H, Toyoda K, Niino H, Yabe A (1993) Appl Phys Lett 63:211Google Scholar
  76. 76.
    Oshima A, Ikeda S, Katoh E, Tabata Y (2001) Radiat Phys Chem 62:39Google Scholar
  77. 77.
    Katan E, Narikis M, Siegmann A (1998) J Appl Polym Sci 70:1471Google Scholar
  78. 78.
    Rosenberg Y, Siegmann A, Narkis M, Shkolnik S (1991) J Appl Polym Sci 43:535Google Scholar
  79. 79.
    Torrisi L, Ciavola G, Percolla R, Benyaich F (1996) Nucl Instrum Methods Phys Res B 116:473Google Scholar
  80. 80.
    Timmerman R, Greyson W (1962) J Vac Sci Technol 6:456Google Scholar
  81. 81.
    Tomie T (1994) US Patent 5,594,773Google Scholar
  82. 82.
    Snigirev A, Kohn I, Snigireva I, Lengeler B (1996) Nature 384:49Google Scholar
  83. 83.
    Lengeler B, Snigirev A, Snigireva I, Raven C (1998) J Appl Phys 84:5855Google Scholar
  84. 84.
    Yang BX (1993) Nucl Instrum Methods Phys Res A 328:578Google Scholar
  85. 85.
    Snigirev A, Kohn I, Snigireva I, Souvorov A, Lengeler B (1998) Appl Opt 37:653Google Scholar
  86. 86.
    Zhang Y, Katoh T, Kagoshima Y, Matui J, Tsusaka Y (2001) Jpn J Appl Phys 40:L705Google Scholar
  87. 87.
    Dhez P, Chevallier P, Lucatorto TB, Tarrio C (1999) Rev Sci Instrum 70:1907Google Scholar

Authors and Affiliations

  1. 1.Sumitomo Heavy Industries Ltd.TokyoJapan

Personalised recommendations