Advertisement

Laser Cleaning Methodologies of Polymer Substrates

  • Savas GeorgiouEmail author
Part of the Advances in Polymer Science book series (POLYMER, volume 168)

Abstract

Ever increasing technological and environmental needs pose significant demands on the removal of unwanted material from substrates . Laser irradiation has been shown to afford a highly effective method for addressing these problems. The three schemes examined include coating removal in a layer-by-layer approach, selective removal of surface impurities , and particle removal. The basic principles underlying these processes are presented. Particular emphasis is placed on the side effects of these procedures, since these will determine to a large extent the success and the wider acceptance of laser cleaning schemes. Elucidation of these effects is also of scientific interest, since they are intimately related with the nature of the processes underlying the interaction of intense laser pulses with molecular/polymeric materials. To this end, these effects are systematically addressed in experiments involving model and realistic systems and are exemplified in the particular case of laser-based restoration of painted artworks. It is shown that, with proper optimization of the irradiation parameters, the side effects of laser processing can be minimized and be inconsequential for substrate integrity. Thus, at least for certain cases, laser cleaning schemes may be a highly effective, accurate, and safe method providing specific advantages not only over conventional methods, but also over other emerging competing methods.

Keywords

UV laser irradiation UV ablation Art conservation Polymers Photochemical processes Structural modifications 

Abbreviations

α

Absorption coefficient

aac

Acoustic wave damping coefficient

β

Thermal expansion coefficient at constant temperature

cp

Heat capacity at constant pressure

cv

Heat capacity at constant volume

cs

Sound speed

Γ

Grüneisen coefficient

γ

Adiabatic ratio

δ

Ablation (etched) depth per pulse

Ebinding

Binding energy to the substrate

D

Thermal diffusivity

Ea

Activation energy

Ecr

Critical energy density for ablation

EKIN

Kinetic energy

FLASER

Laser fluence

Fthr

Threshold fluence for material removal

ΔHvap

Evaporation enthalpy

ΔHsub

Sublimation enthalpy

ηc

Particle laser-induced removal efficiency

θ

Ratio τpulseac

I

Laser intensity

k(T)

Reaction rate constant

κB

Boltzmann constant

κT

Isothermal compressibility

λ

Wavelength

M

Mass

Nfringe

Number of interference fringes

Npulse

Number of laser pulses

nR

Refractive index

n

Density of particles on surface after irradiation

n0

Density of particles on surface before irradiation

νac

Acoustic wave frequency

P

Pressure

PMMA

Poly(methyl methacrylate)

PS

Polystyrene

R

Reflectivity

RB

Gas constant

ρ

Density

rp

Particle radius

σp

Particle absorption coefficient

σtens

Surface tension coefficient

T

Temperature

tth

Thermal diffusion time

τpulse

Laser pulse duration

τac

Time for an acoustic wave to traverse the irradiated volume

υ

Expansion velocity

U

Wave amplitude in the hologram plane

φ

Phase of the optical wave

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The author would like to thank G. Bounos for his critical help in preparing this manuscript. The work was supported in part by the Ultraviolet Laser Facility operating at F.O.R.T.H. under the Improving Human Potential (IHP)-Access to Research Infrastructures program (contract No. HPRI-CT-1999-00074), the Training and Mobility of Researchers (TMR) program of the EU (project No. ERBFMRX-CT98-0188), and the PENED program (project No. 99E D 6) of the General Secretariat of Research and Technology—Ministry of Development (Greece).

References

  1. 1.
    Srinivasan R, Braren B (1989) Chem Rev 89:1303Google Scholar
  2. 2.
    Srinivasan R (1994) In: Miller JS (ed) Laser ablation principles and applications. Springer Ser Mater. Springer, Berlin Heidelberg New YorkGoogle Scholar
  3. 3.
    Bäuerle D (2000) Laser processing and chemistry, 3rd edn. Springer, Berlin Heidelberg New YorkGoogle Scholar
  4. 4.
    Lippert T, Dickinson TJ (2003) Chem Rev 103:453Google Scholar
  5. 5.
    Azema AG (1994) In: Laude LD (ed) Excimer lasers. Kluwer, DordrechtGoogle Scholar
  6. 6.
    Vogel A, Venugopalan V (2003) Chem Rev 103:577Google Scholar
  7. 7.
    Luk’yanchuk BS (2002) Laser cleaning. World Scientific, SingaporeGoogle Scholar
  8. 8.
    DeJule R (1998) Semicond Intern 8:65Google Scholar
  9. 9.
    Kern W (1993) Handbook of semiconductor wafer cleaning. Noyes, New YorkGoogle Scholar
  10. 10.
    Reed R (1970) Ancient skins, parchments, and leathers. Seminar, London New YorkGoogle Scholar
  11. 11.
    Wolbers R, Sterman RN, Stavroudis C (1990) Notes for workshop on new methods in the cleaning of paintings. The Getty Conservation Institute, Marina del ReyGoogle Scholar
  12. 12.
    Asmus JF (1986) IEEE Circuit Devic 2:6Google Scholar
  13. 13.
    Watkins KG, Larson JH, Emmony DC, Steen WM (1995) Proceedings of the NATO Advanced Study Institute on laser processing: surface treatment and film deposition. Kluwer, Dordrecht, p 907Google Scholar
  14. 14.
    Zapka W, Ziemlich W, Tam AC (1991) Appl Phys Lett 58:2217Google Scholar
  15. 15.
    Imen K, Lee SJ, Allen SD (1991) Appl Phys Lett, 58:203Google Scholar
  16. 16.
    Fotakis C, Anglos D, Balas C, Georgiou S, Vainos NA, Zergioti I, Zafiropulos V (1997) In: Tam AC (ed) OSA TOPS on lasers and optics for manufacturing, vol 9. Optical Society of America, Washington DC, pp 99–104Google Scholar
  17. 17.
    Zafiropulos V, Fotakis C (1997) In: Cooper M (ed) Laser cleaning in conservation: an introduction, chapter 6. Butterworth Heinemann, OxfordGoogle Scholar
  18. 18.
    Georgiou S, Zafiropulos V, Anglos D, Balas C, Tornari V, Fotakis C (1997) Appl Surf Sci 127–129:738Google Scholar
  19. 19.
    Brannon JH, Tam AC, Kurth RH (1991) J Appl Phys 70:3881Google Scholar
  20. 20.
    Manz C, Zafiropulos V (1997) Opto & Laser Europe (OLE) 45:27Google Scholar
  21. 21.
    Daurelio G, Chita G, Cinquepalmi (1999) Appl Phys A 69:S543Google Scholar
  22. 22.
    Mills JS (1956) J Chem Soc 2196Google Scholar
  23. 23.
    de la Rie ER (1988) Stud Conserv 33:53Google Scholar
  24. 24.
    de la Rie ER (1989) Anal Chem 61:1228AGoogle Scholar
  25. 25.
    Kakasaki T, Tsunemi A, Nagasaka K, Suda A, Tashiro H (1996) Appl Phys A 63:435Google Scholar
  26. 26.
    Bityurin N, Luk’yanchuk BS, Hong MH, Chong CT (2003) Chem Rev 103:519Google Scholar
  27. 27.
    Kuper S, Brannon J, Brannon K (1993) Appl Phys A 56:43Google Scholar
  28. 28.
    Schroeder K, Schuoecker D (1998) Laser Phys 8:38Google Scholar
  29. 29.
    Schmidt M, Li L, Spencer J, Key PH (1998) Appl Surf Sci 138/139:378Google Scholar
  30. 30.
    Galantucci LM, Gravina A, Chita G, Chinquepalmi M (1997) Polym Polym Compos 5:87Google Scholar
  31. 31.
    Liu K, Garmire E (1995) Appl Opt 34:4409Google Scholar
  32. 32.
    Schmidt MJJ, Li L, Spencer JT (2000) Appl Surf Sci 53:154Google Scholar
  33. 33.
    Bityurin N, Arnold N, Luk’yanchuk N, Bauerle D (1998) Appl Surf Sci 164:127Google Scholar
  34. 34.
    Zhigilei LV, Garrison BJ (2000) J Appl Phys 88:1281Google Scholar
  35. 35.
    Georgiou S, Koubenakis A, Lassithiotaki M, Labrakis J (1998) J Chem Phys 109:8591Google Scholar
  36. 36.
    Kautek W, Pentzien S, Rudolph P, Krüger J, König E (1991) Appl Surf Sci 127–129:746Google Scholar
  37. 37.
    Kolar J, Strlič M, Müller-Hess D, Gruber A, Troschke K, Pentzien S, Kautek W (2000) J Cult Heritage 1:S221Google Scholar
  38. 38.
    Kolar J, Strlič M, Marinček M (2002) Appl Phys A 75:673Google Scholar
  39. 39.
    Lu YF, Lee YP, Zhou MS (1998) J Appl Phys 83:1677Google Scholar
  40. 40.
    Koren G, Donelon JJ (1998) Appl Phys B 45:45Google Scholar
  41. 41.
    Coupland K, Herman PR, Gu B (1998) Appl Surf Sci 127–129:731Google Scholar
  42. 42.
    Mosbacher M, Dobler V, Boneberg J, Leiderer P (2000) Appl Phys A 70:669Google Scholar
  43. 43.
    Fourrier T, Schrems G, Mühlberger T, Heitz J, Arnold N, Bäuerle D, Mosbacher M, Boneberg M, Leiderer P (2001) Appl Phys A 72:1Google Scholar
  44. 44.
    Halfpenny DR, Kane DM (1999) J Appl Phys 86:6641Google Scholar
  45. 45.
    Mosbacher M, Mónzer H-J, Zimmermann J, Solis J, Boneberg J, Leiderer P (2001) Appl Phys A 72:41Google Scholar
  46. 46.
    Chaoui N, Solis J, Afonso CN, Fourrier T, Muehlberger T, Schrems G, Mosbacher M, Bäuerle D, Bertsch M, Leiderer P (2003) Appl Phys A 72:41Google Scholar
  47. 47.
    Dobler V, Oltra R, Boquillon JP, Mosbacher M, Boneberg J, Leiderer P (1999) Appl Phys A 69:335Google Scholar
  48. 48.
    Dongsik K, Park HK, Grigoropoulos CP (2001) Int J Heat Mass Trans 44:3843Google Scholar
  49. 49.
    Yavas OJ, Leiderer P, Park HK, Grigoropoulos CP, Poon CC, Tam AC (1994) Phys Rev Lett 72:2021Google Scholar
  50. 50.
    Lee YP, Lu YF, Chan DSH, Low TS, Zhou MS (1998) Jpn J Appl Phys 37:2524Google Scholar
  51. 51.
    Tam AC, Park HK, Grigoropoulos CP (1998) Appl Surf Sci 127–129:721Google Scholar
  52. 52.
    Balas C (1997) IEEE Trans Biomed Eng 44:1Google Scholar
  53. 53.
    Anglos D (2001) Appl Spectrosc 55:186Google Scholar
  54. 54.
    Anglos D, Solomidou M, Zergioti I, Zafiropulos V, Papazoglou TG, Fotakis C (1996) Appl Spectrosc 50:1331Google Scholar
  55. 55.
    Clark RJH (1999) J Mol Struct 480/481:15Google Scholar
  56. 56.
    Castillejo M, Martin M, Silva D, Stratoudaki T, Anglos D, Burgio L, Clark RJH (2000) J Mol Struct 550/551:191Google Scholar
  57. 57.
    Lee JM, Watkins KG (2000) Opt Laser Eng 34:429Google Scholar
  58. 58.
    Vainos NA, Mailis S, Pissadakis S, Boutsikaris L, Dainty P, Parmiter PJM, Hall TJ (1996) Appl Optics 35:6304Google Scholar
  59. 59.
    Lazare S, Granier V (1990) Chem Phys Lett 168:593Google Scholar
  60. 60.
    Pettit GH, Ediger MN, Hahn DW, Brinson BE, Sauerbrey R (1994) Appl Phys A 58:573Google Scholar
  61. 61.
    Furutani H, Fukumura H, Masuhara H (1996) J Phys Chem 100:6871Google Scholar
  62. 62.
    Fukumura H, Mibuka N, Eura S, Masuhara H, Nishi N (1993) J Phys Chem 97:13761Google Scholar
  63. 63.
    Fujiwara H, Fukumura H, Masuhara H (1995) J Phys Chem 99:11844 and references thereinGoogle Scholar
  64. 64.
    Lippert TK, Bennett LS, Nakamura T, Niino H, Yabe A (1996) Appl Surf Sci 96–98:601Google Scholar
  65. 65.
    Logan D, Wight CA, Apkarian VA (1997) Chem Phys 217:99Google Scholar
  66. 66.
    Ehring JH, Sundqvist BUR (1995) J Mass Spectr 30:1303Google Scholar
  67. 67.
    Venugopalan V, Nishioka NS, Mikic BB (1995) Biophys J 69:1259Google Scholar
  68. 68.
    Lippert T, Gerber T, Wokaun A, Funk DJ, Fukumura H, Goto M (1999) Appl Phys Lett 75:1018Google Scholar
  69. 69.
    Wei J, Hoogen N, Lippert T, Nuyken O, Wokaun A (2001) J Phys Chem 105:1267Google Scholar
  70. 70.
    Lippert T, Nakamura T, Niino H, Yabe A (1997) Appl Surf Sci 109–110:227Google Scholar
  71. 71.
    Yingling YG, Zhigilei LV, Garrison BJ (2001) Photochem Photobiol A 145:173Google Scholar
  72. 72.
    Lippert T, Yabe A, Wokaun A (1997) Adv Mater 9:105Google Scholar
  73. 73.
    Larciprete R, Stuke M (1987) Appl Phys B 42:181Google Scholar
  74. 74.
    Fujiwara H, Nakajima Y, Fukumura H, Masuhara H (1995) J Phys Chem 99:11481Google Scholar
  75. 75.
    Lippert T, Stoutland PO (1997) Appl Surf Sci 109/110:43Google Scholar
  76. 76.
    Arnold BR, Scaiano JC (1992) Macromolecules 25:1582Google Scholar
  77. 77.
    Webb RL, Langford SC, Dickinson JT, Lippert TK (1998) Appl Surf Sci 127–129:815Google Scholar
  78. 78.
    Lippert TK, Langford SC, Wokaun A, Georgiou S, Dickinson JT (1999) J Appl Phys 86:7116Google Scholar
  79. 79.
    Grivas C, Niino H, Yabe A (1999) Appl Phys A 69:S159Google Scholar
  80. 80.
    Haselbach E, Rohner Y, Suppan P (1990) Helv Chim Acta 73:1644Google Scholar
  81. 81.
    Rabek JF (1987) Mechanisms of photophysical processes and photochemical reactions in pPolymers: theory and applications. Wiley, ChichesterGoogle Scholar
  82. 82.
    Haward RN, Young RJ (eds) (1997) The physics of glassy polymers, 2nd edn. Chapman & Hall, LondonGoogle Scholar
  83. 83.
    Lassithiotaki M, Athanassiou A, Anglos D, Georgiou S, Fotakis C (1999) Appl Phys A 69:363Google Scholar
  84. 84.
    Athanassiou A, Andreou E, Anglos D, Georgiou S, Fotakis C (1999) Appl Phys A 86:S285Google Scholar
  85. 85.
    Athanassiou A, Lassithiotaki M, Anglos D, Georgiou S, Fotakis C (2000) Appl Surf Sci 154/155:89Google Scholar
  86. 86.
    Andreou E, Athanassiou A, Fragouli D, Anglos D, Georgiou S (2002) Laser Chem 20:1Google Scholar
  87. 87.
    Athanassiou A, Andreou E, Bonarou A, Tornari V, Anglos A, Georgiou S, Fotakis C (2002) Appl Surf Sci 197–198:757Google Scholar
  88. 88.
    Athanassiou A, Andreou E, Fragouli D, Anglos D, Georgiou S, Fotakis C (2001) J Photochem Photobiol A 145:229Google Scholar
  89. 89.
    Noyes RM (1961) Prog React Kinet 1:29Google Scholar
  90. 90.
    Fournier I, Tabet JC, Bolbach G (2002) Int J Mass Spectrom 219:515Google Scholar
  91. 91.
    Krajnovich DJ (1997) J Appl Phys 82:427Google Scholar
  92. 92.
    Krajnovich DJ, Xazquez JE (1993) J Appl Phys 73:3001Google Scholar
  93. 93.
    Ichimura T, Mori Y, Shinohara H, Nishi Y (1994) Chem Phys 189:117 and references thereinGoogle Scholar
  94. 94.
    Tsuboi Y, Hatanaka K, Fukumura H, Masuhara H (1994) J Phys Chem 98:11237Google Scholar
  95. 95.
    Koubenakis A, Elimioti T, Georgiou S (1999) Appl Phys A 69:637Google Scholar
  96. 96.
    Yingling YG, Zhigilei LV, Garrison BJ, Koubenakis A, Labrakis J, Georgiou S (2001) Appl Phys Lett 78:1631Google Scholar
  97. 97.
    Koubenakis A, Labrakis J, Georgiou S (2001) Chem Phys Lett 346:54Google Scholar
  98. 98.
    Preuss S, Spath M, Zhang Y and Stuke M (1993) Appl Phys Lett 62:3049Google Scholar
  99. 99.
    Baudach S, Krüger J, Kautek W (2001) Rev Laser Eng 29:705Google Scholar
  100. 100.
    Vogel A, Noack J, Hüttmann G, Paltauf G (2002) Proc SPIE 4633A:1Google Scholar
  101. 101.
    König K, Riemann I, Fritsche W (2001) Opt Lett 26:819Google Scholar
  102. 102.
    Mahan GD, Cole HS, Lin YS, Philipp HR (1988) Appl Phys Lett 53:2377Google Scholar
  103. 103.
    Gusev VE, Karabutov AA (1993) Laser optoacoustics. American Institute of Physics, New YorkGoogle Scholar
  104. 104.
    Hare DE, Franken J, Dlott DD (1995) J Appl Phys 77:5950Google Scholar
  105. 105.
    Lee I-YS, Wen X, Tolbert WA, Dlott DD, Doxtader D, Arnold DR (1992) J Appl Phys 72:2440Google Scholar
  106. 106.
    Zweig AD, Venugopalan V, Deutch TF (1993) J Appl Phys 74Google Scholar
  107. 107.
    Siano S, Pini R, Salimbeni R (1999) Appl Phys Lett 74:1233Google Scholar
  108. 108.
    Hopp B, Csete M, Révész K, Vinkó J, Bor Z (1996) Appl Surf Sci 96/98:611Google Scholar
  109. 109.
    Wagner F, Hoffmann P (1999) Appl Phys A 69:S841Google Scholar
  110. 110.
    Vest CH (1971) Holographic interferometry. Academic, New YorkGoogle Scholar
  111. 111.
    Bonarou A, Antonelli L, Tornari V, Georgiou S, Fotakis C (2001) Appl Phys A 73:647Google Scholar
  112. 112.
    Smith JW, Kramer EJ, Mills PJ (1994) J Polym Sci B: Polym Phys 32:1731Google Scholar
  113. 113.
    Wu S (1982) Polymer interface and adhesion. Marcel Dekker, New YorkGoogle Scholar
  114. 114.
    Callister WD (1997) Materials science and engineering: an introduction. Wiley, New YorkGoogle Scholar
  115. 115.
    Lokhandwalla M, Sturtevant B (2000) Phys Med Biol 45:1923Google Scholar
  116. 116.
    Blanchard D, Casalengo R, Pierre M, Trommsdorff HP (1988) J Appl Phys 65:3351Google Scholar
  117. 117.
    Watanabe S, Flotte TJ, McAuliffe DJ (1988) J Invest Dermatol 90:761Google Scholar
  118. 118.
    Doukas AG, McAuliffe DJ, Flotte TJ (1993) Ultrasound Med Biol 19:137Google Scholar

Authors and Affiliations

  1. 1.Institute of Electronic Structure and LaserFoundation for Research and Technology–HellasHeraklionGreece

Personalised recommendations