Skip to main content

Poly(Vinylformamide- co -Vinylamine)/Inorganic Oxide Hybrid Materials

  • Chapter
Polyelectrolytes with Defined Molecular Architecture I

Abstract

Novel ways to synthesize poly(vinylamine)/silica hybrid materials rich in free amino moieties using vinylformamide (VFA) as the key monomer are reported. Such materials are accessible from poly(vinylamine) which is obtained from radically produced poly(vinylformamide) (PVFA) which was either immobilized on to silica surfaces from solution and converted into poly(vinylamine- co -vinylformamide) polymers (PVFA- co -PVAm) by acidic hydrolysis, or by acidic hydrolysis in solution with subsequent adsorption on to silica. We adsorbed control PVFA- co -PVAm samples of different molecular masses and co-polymer compositions from aqueous solutions on to inorganic surfaces such as silica or titania simply by pH control. Direct surface functionalization using the VFA monomers was possible by their radical graft co-polymerization with bifunctional monomers, for example 1,3-divinylimidazolid-2-one (BVU) or on silica particles which were pre-functionalized with vinyltriethoxysilane (VTS). The influence of the amino content and molar mass (4000, 40,000, and 400,000 g mol−1) of PVFA- co -PVAm on the degree of surface coverage, charging, and polarity was studied using X-ray photoelectron spectroscopy (XPS), potentiometric titrations, and electrokinetic measurements, and solvatochromic probes. It was shown that the amino content of the co-polymer has a significant influence on the amount of polymer adsorbed, the layer thickness, and surface polarity. Post-functionalization reactions with isocyanates or fullerene were used as a suitable method for enhancing the stability of the polyelectrolyte layer on the inorganic surface. They also open the way to producing multi-functional hybrid materials. The adsorption and post-functionalization of PVFA- co -PVAm samples on to gold-coated silicon wafer surfaces was used to build up laterally patterned surfaces for sensors and biological applications.

In memory of Professor Dr Hans-Jörg Jacobasch and to honor his work in surface sciences

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

ABAC:

2,2′-Azobis-(2-amidinopropene) dihydrochloride

AFM:

Atomic force microscopy

βb:

Surface basicity parameter

BICDPM:

4,4′-(Bisisocyanate)diphenyl methane

BVU:

1,3-Divinylimidazolid-2-one

CP:

Cross polarization

EPR:

Electron paramagnetic resonance

IEP:

Isoelectric point (IEP=pH|ξx=0)

HBD:

Hydrogen bond donating

MAS:

Magic angle spinning

n :

Number of correlation points

PBVH:

Poly(1,3-divinylimidazolid-2-one)

PVFA:

Poly(vinylformamide)

PVFA- co -PBVH:

Poly(vinylformamide- co -1,3-divinylimidazolid-2-one)

PVFA- co -PVAm:

Poly(vinylformamide- co -vinylamine)

PVAm- co -PBVH:

Poly(vinylamine- co -1,3-divinylimidazolid-2-one)

PVFA- co -PVAm-x:

Poly(vinylformamide- co -vinylamine) which contains x w/w-% of the PVAm fraction (randomly distributed)

PVAm:

Poly(vinylformamine)

r :

Correlation coefficient

σ :

Standard deviation

SAM:

Self-assembled monolayer

SANS:

Small angle neutron scattering

VFA:

Vinylformamide

VTS:

Vinyltriethoxysilane

VTS-silica:

Vinyltriethoxysilane grafted on to silica

ξ :

Correlation length

XPS:

X-ray photoelectron spectroscopy

References

  1. Mark JE, Lee CYC, Bianconi PA (1995) (eds) Hybrid inorganic–organic composites. American Chemical Society, vol 585, Washington

    Google Scholar 

  2. Beecroft LL, Ober OK (1997) Chem Mater 9:1302

    Google Scholar 

  3. Frisch HL, Mark JE (1996) Chem Mater 8:1735

    Google Scholar 

  4. Mann S, Burkett SL, Davis SA, Fowler CE, Mendelson NH, Sims SD, Walsh D, Whilton NT (1997) Chem Mater 11:1719

    Google Scholar 

  5. Iler RK (1979) The chemistry of silica. Wiley, New York

    Google Scholar 

  6. Scott RPW (1993) Silica gel and bonded phases. John, New York

    Google Scholar 

  7. Bergna HE (1994) The colloid chemistry of silica. American Chemical Society, Adv Chem Ser, Washington DC

    Google Scholar 

  8. Dautzenberg H, Jäger W, Kötz J, Philipp B, Seidel C, Stscherbina D (1994) Polyelectrolytes: formation, characterization and application. Hanser, München

    Google Scholar 

  9. Plueddeman EP (1991) Silane coupling agents. Plenum Press, New York

    Google Scholar 

  10. Pizzi A, Mittal KL (1994) Handbook of adhesive technology. Marcel Dekker, New York

    Google Scholar 

  11. Comyn J (1997) Primers and coupling agents. In: Adhesion science. Royal Society of Chemistry, Cambridge

    Google Scholar 

  12. Festschrift in Honor of the 75th Birthday of Plueddeman EP (1991) J Adhes Sci Technol 5:251, 425, 771

    Google Scholar 

  13. Heublein G, Heublein B, Hortschanski P, Meissner H, Schütz HJ (1988) Macromol Sci Chem A 25:183

    Google Scholar 

  14. Erler U, Heublein G, Heublein B (1990) Acta Polym 41:103

    Google Scholar 

  15. Köthe M, Müller M, Simon F, Komber H, Adler HJ, Jacobasch HJ (1999) Colloids Surf A 154:75

    Google Scholar 

  16. Sidorenko A, Zhai XW, Simon F, Pleul D, Greco A, Tsukruk VV (2002) Macromolecules 35:5131

    Google Scholar 

  17. Laible R, Hamann K (1980) Adv Colloid Interface Sci 13:65

    Google Scholar 

  18. Tsubokawa N (1992) Prog Polym Sci 17:417

    Google Scholar 

  19. Zaper AM, Koenig JL (1985) Polym Compos 6:156

    Google Scholar 

  20. Arkles B (1977) Chemtech 7:766

    Google Scholar 

  21. Arkles B (2000) Gelest. Gelest Inc, Tullytown, PA 19007 6308 USA, pp 16–104

    Google Scholar 

  22. O’Haver JH, Harwell JH, Evans LR, Waddell WH (1996) J Appl Polym Sci 59:1427

    Google Scholar 

  23. Ou YC, Yu ZZ, Vidal A, Donnet JB (1996) J Appl Polym Sci 59:1321

    Google Scholar 

  24. Johnson SA, Brigham ES, Ollivier PJ, Mallouk TE (1997) Chem Mater 9:2448

    Google Scholar 

  25. Sidorenko A, Minko S, Schenk-Meuser K, Duschner H, Stamm M (1999) Langmuir 15:8349

    Google Scholar 

  26. Minko S, Patil S, Datsuk V, Simon F, Eichorn KJ, Motornov M, Usov D, Tokarev I, Stamm M (2002) Langmuir 18:289

    Google Scholar 

  27. Spange S (2000) Prog Polym Sci 17:417

    Google Scholar 

  28. Spange S, Eismann U, Höhne S, Langhammer E (1997) Macromol Symp 126:223

    Google Scholar 

  29. Spange S, Höhne S, Francke V, Günther H (1999) Macromol Chem Phys 200:1054

    Google Scholar 

  30. Spange S, Gräser A, Müller H, Zimmermann Y, Rehak P, Jäger C, Fuess H, Baethz C (2001) Chem Mater 13:3698

    Google Scholar 

  31. De Campos EA, da Silva Alfaya AA, Ferrari, RT, Costa, CMM (2001) J Colloid Interface Sci 240:97

    Google Scholar 

  32. Decher G (1997) Science 227:1232

    Google Scholar 

  33. Sukhorukov GB, Donath E, Lichtenfels H, Knippel E, Knippel M, Möhwald H (1998) Colloids Surf A 137:253

    Google Scholar 

  34. Donath E, Sukhorukov GB, Caruso F, Davis SA, Möhwald H (1998) Angew Chem 110:2324

    Google Scholar 

  35. Bauer D, Killmannn E, Jäger W (1998) Prog Colloid Polym Sci 109:161

    Google Scholar 

  36. Huguenard C, Widmaier J, Elaissari A, Pefferkorn E (1997) Macromolecules 30:1434

    Google Scholar 

  37. Gailliez-Degremont E, Bacquet M, Laureyns J, Morcellet M (1997) J Appl Polym Sci 65:871

    Google Scholar 

  38. Hao E, Wang L, Zhuang J, Yang B, Zhang X, Shen J (1999) Chem Lett 5

    Google Scholar 

  39. Buchhammer HM, Petzold G, Lunkwitz K (1999) Langmuir 15:4306

    Google Scholar 

  40. Kato T, Kawaguchi M, Takahashi A, Onabe T, Tanaka H (1999) Langmuir 15:4302

    Google Scholar 

  41. Lindsay GA, Roberts MJ, Chafin AP, Hollins RA, Merwin LH, Steninger JD, Smith RY, Zarras P (1999) Chem Mater 11:924

    Google Scholar 

  42. Roberts MJ, Lindsay GA (1998) J Am Chem Soc 120:11202

    Google Scholar 

  43. Shi X, Sanedrin RJ, Zhou F (2002) J Phys Chem B 106:1173

    Google Scholar 

  44. Lin Y, Rao AM, Sadanadan B, Kenik EA, Sun YP (2002) J Phys Chem B 106:1294

    Google Scholar 

  45. Zheng J, Stevenson MS, Hikida RS, van Patten PG (2002) J Phys Chem B 106:1252

    Google Scholar 

  46. Malynych S, Luzinov I, Chumanov G (2002) J Phys Chem B 106:1280

    Google Scholar 

  47. White LD, Tripp CP (2000) J Colloid Interface Sci 227:237

    Google Scholar 

  48. Blackledge C, McDonald JD (1999) Langmuir 15:8119

    Google Scholar 

  49. De Campos EA, da Silva Alfaya AA, Ferrari RT, Costa CMM (2001) J Colloid Interface Sci 240:97

    Google Scholar 

  50. Haupt J, Ennis J, Sevick EM (1999) Langmuir 15:3886

    Google Scholar 

  51. Serizawa T, Yamamoto K, Akashi M (1999) Langmuir 15:4682

    Google Scholar 

  52. Poptoshev E, Rutland, MW, Claesson PM (1999) Langmuir 15:7789

    Google Scholar 

  53. Tanaka H (1979) J Polym Sci Polym Chem Ed 17:1239

    Google Scholar 

  54. Achari AE, Coqueret X, Lablache-Combier A, Loucheux C (1993) Makromol Chem 194:1879

    Google Scholar 

  55. Dawson DJ, Gless RD, Wingward RE (1976) J Am Chem Soc 98:5996

    Google Scholar 

  56. Hart R (1959) Makromol Chem 32:51

    Google Scholar 

  57. Bayer E, Geckeler K, Weingartner K (1980) Makromol Chemie 181:585

    Google Scholar 

  58. Pinschmidt RK, Renz WL, Caroll WE, Yacouth K, Drescher J, Nordquist AF, Chen N (1997) J Macromol Sci Pure Appl Chem A34:1885

    Google Scholar 

  59. Badesso RJ, Nordquist AF, Pinschmidt RU, Sagl DJ (1996) Adv Chem Ser 248:489

    Google Scholar 

  60. Spange S, Madl A, Eismann U, Utecht J (1997) Macromol Rapid Commun 18:1075

    Google Scholar 

  61. Madl A, Spange S, Waldbach T, Anders E (1999) Macromol Chem Phys 200:1495

    Google Scholar 

  62. Madl A, Spange S (2000) Macromolecules 33:5325

    Google Scholar 

  63. Voigt I, Spange S, Simon F, Komber H, Jacobasch HJ (2000) Colloid Polym Sci 278:48

    Google Scholar 

  64. Voigt I, Simon F, Estel K, Spange S, Friedrich M (2001) Langmuir 17:8355

    Google Scholar 

  65. Meyer T, Rehak P, Jäger, C, Voigt I, Simon F, Spange S (2001) Macromol Symp 163:87

    Google Scholar 

  66. Eschner M, Pleul D, Spange S, Simon F (2002) In: Baselt JP, Gerlach G (eds) Dresdener Beiträge zur Sensorik, vol 16. w.e.b. Universitätsverlag, Dresden, pp 149–153

    Google Scholar 

  67. Shi J, Seliskar CJ (1997) Chem Mater 9:821

    Google Scholar 

  68. Tamaki R, Chujo Y (1999) Chem Mater 11:1719

    Google Scholar 

  69. Madl A, Spange S (2000) Macromol Symp 161:149

    Google Scholar 

  70. Roth I, Spange S (2001) Macromol Rapid Commun 22:1288

    Google Scholar 

  71. Meyer T, Spange S, Simon F (2002) J Colloid Interface Sci, submitted for publication

    Google Scholar 

  72. Meyer T, Helleg T, Spange S, Jäger C, Hesse S, Bellmann C (2002) J Polym Sci A, submitted for publication

    Google Scholar 

  73. Voigt I, Simon F, Estel K, Spange S (2001) Langmuir 17:3080

    Google Scholar 

  74. Roth I, Seifert A, Hartmann P, Spange S, in preparation

    Google Scholar 

  75. Bauer D, Killmann E (1997) Macromol Symp 126:173

    Google Scholar 

  76. Rehmet R, Killmann E (1999) Colloid Surf A 149:323

    Google Scholar 

  77. Van de Steeg HGM (1992) Langmuir 8:2538

    Google Scholar 

  78. Durand G, Lafuma F, Audebert R (1988) Prog Colloid Polym Sci 76:278

    Google Scholar 

  79. Wang T, Audebert R (1988) Colloid Interface Sci 121:32

    Google Scholar 

  80. Davies RJ, Dix L, Toprakcioglu C (1989) Colloid Interface Sci 129:145

    Google Scholar 

  81. Reichardt C (1994) Chem Rev 94:2319

    Google Scholar 

  82. Reichardt C, Harbusch-Görnert E (1983) Liebigs Ann Chem 721

    Google Scholar 

  83. Spange S, Reuter A, Lubda D (1999) Langmuir 15:2103

    Google Scholar 

  84. Spange S, Reuter A (1999) Langmuir 15:141

    Google Scholar 

  85. Spange S, Reuter A, Prause S, Bellmann C (2000) J Adhes Sci Technol 14:399

    Google Scholar 

  86. Jensen WB (1991) In: Mittal KL, Anderson HR (eds) Acid–base-interactions. VSP, Utrecht

    Google Scholar 

  87. Allemand PM, Khemani KC, Koch A, Wudl F, Holzer K, Donovan S, Gruner G, Thomson JD (1991) Science 253:301

    Google Scholar 

  88. Sijbesma R, Srdanow G, Wudl F, Castro JA, Wilkins C, Freedman SH, DeCamp DL, Kenyon GL (1993) J Am Chem Soc 115:6510

    Google Scholar 

  89. Tabata Y, Ikada Y (1999) Pure Appl Chem 71:2047

    Google Scholar 

  90. Yamakoshi YN, Yagami T, Fukuhara F, Sueyoshi S, Miyat NJ (1994) Chem Soc Chem Commun 517

    Google Scholar 

  91. Chen XL, Jenekhe SA (1999) Langmuir 15:8007

    Google Scholar 

  92. Hungerbuchler H, Guldi DM, Asmus KD (1993) J Am Chem Soc 115: 3386

    Google Scholar 

  93. Beeby A, Eastoe J, Heenan RK (1994) J Chem Soc Chem Commun 173

    Google Scholar 

  94. Feng W, Miller B. (1999) Langmuir 15:3152

    Google Scholar 

  95. Reed CA, Bolskar RD (2000) Chem Rev 100:1075

    Google Scholar 

  96. Mrzel A, Mertelj A, Omerzu A, Copic M, Mihailovic D (1999) J Phys Chem B 103:11256

    Google Scholar 

  97. Force field calculations were done with PCMODEL 4.0 (Serena Software, Bloomington, IN, USA) using the MMX-force field

    Google Scholar 

  98. Hollemann AE, Wiberg E (1976) Lehrbuch der anorganischen Chemie, 81–90 Aufl. Berlin, de Gruyter, p 801

    Google Scholar 

  99. Meyer T, Spange S, Hesse S, Jäger C (2002) Macromol Chem Phys, submitted for publication

    Google Scholar 

  100. Gu L, Zhu S, Hrymak AN, Pelton RH (2000) Macromol Rapid Commun 22:212

    Google Scholar 

  101. Higgins JS, Benoit HC (1994) Polymers and neutron scattering. Clarendon Press, Oxford

    Google Scholar 

  102. De Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, London

    Google Scholar 

  103. Meyer T (2001) PhD Thesis, Chemnitz University of Technology

    Google Scholar 

Download references

Acknowledgement

The generous financial support of this project by the Deutsche Forschungsgemeinschaft (DFG), BASF AG Ludwigshafen, and the Fonds der Chemischen Industrie is gratefully acknowledged.

We thank the following scientists for co-operation (see also the Refs. [60, 65, 69, 99]): solid-state NMR spectroscopy was performed by Dipl.-Phys. Stephanie Hesse and Professor Christian Jäger (Institute of Physics, Friedrich Schiller University Jena) and Dr Hartmut Komber (Institute of Polymer Research, Dresden); the EPR spectra were measured by Dr Manfred Friedrich (Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena), electrokinetic measurements were carried out by Dr Cornelia Bellmann (Institute of Polymer Research, Dresden), and SANS measurements performed in Grenoble were supported by Dr Thomas Hellweg (Iwan N. Stranski Institute, Berlin).

Furthermore, we thank Professor Christian Reichardt (University of Marburg) for generously providing betaine dyes 1 and 2, and Dr Gunnar Schornick and Dr Rainer Dyllick-Brenzinger (BASF AG, Ludwigshafen) for providing chemicals and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Spange .

Editor information

Manfred Schmidt

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Spange, S. et al. (2004). Poly(Vinylformamide- co -Vinylamine)/Inorganic Oxide Hybrid Materials. In: Schmidt, M. (eds) Polyelectrolytes with Defined Molecular Architecture I. Advances in Polymer Science, vol 165. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b11267

Download citation

  • DOI: https://doi.org/10.1007/b11267

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00528-5

  • Online ISBN: 978-3-540-36433-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics