Skip to main content

Role of the 5’-cap in the biogenesis of spliceosomal snRNPs

Part of the Topics in Current Genetics book series (TCG,volume 12)

Abstract

The biogenesis of spliceosomal UsnRNPs in higher eukaryotes involves a nucleocytoplasmic shuttling cycle. After transcription and processing in the nucleus, the m7G-cap-dependent export of the snRNAs U1, U2, U4, and U5 to the cytoplasm occurs. In the cytoplasm, these UsnRNAs specifically associate with seven Sm-proteins and form a doughnut-shaped snRNP core structure. This assembly, mediated by the SMN complex, is a prerequisite for the hypermethylation of the m7G-cap to the 2,2,7-trimethylguanosine (m3G)-cap. Snurportin1 (SPN1), specifically, recognises the m3G-cap and facilitates the nuclear import of UsnRNPs. The recently determined crystal structure of human SPN1 reveals a significantly different binding mode for the cap structure in comparison to that of the m7G-binding proteins CBC, eIF4E and VP39.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. Allen NP, Huang L, Burlingame A, Rexach M (2001) Proteomic analysis of nucleoporin interacting proteins. J Biol Chem 276:29268-29274

    CrossRef  Google Scholar 

  • 2. Allmang C, Kufel J, Chanfreau G, Mitchell P, Petfalski E, Tollervey D (1999a) Functions of the exosome in rRNA, snoRNA and snRNA synthesis. EMBO J 18:5399-5410

    CrossRef  Google Scholar 

  • 3. Allmang C, Petfalski E, Podtelejnikov A, Mann M, Tollervey D, Mitchell P (1999b) The yeast exosome and human PM-Scl are related complexes of 3’ $to$ 5’ exonucleases. Genes Dev 13:2148-2158

    Google Scholar 

  • 4. Bischoff FR, Krebber H, Kempf T, Hermes I, Ponstingl H (1995) Human RanGTPase-activating protein RanGAP1 is a homologue of yeast Rna1p involved in mRNA processing and transport. Proc Natl Acad Sci USA 92:1749-1753

    Google Scholar 

  • 5. Bischoff FR, Ponstingl H (1991a) Catalysis of guanine nucleotide exchange on Ran by the mitotic regulator RCC1. Nature 354:80-82

    Google Scholar 

  • 6. Bischoff FR, Ponstingl H (1991b) Mitotic regulator protein RCC1 is complexed with a nuclear ras-related polypeptide. Proc Natl Acad Sci USA 88:10830-10834

    Google Scholar 

  • 7. Black BE, Holaska JM, Levesque L, Ossareh-Nazari B, Gwizdek C, Dargemont C, Paschal BM (2001) NXT1 is necessary for the terminal step of Crm1-mediated nuclear export. J Cell Biol 152:141-155

    CrossRef  Google Scholar 

  • 8. Black BE, Levesque L, Holaska JM, Wood TC, Paschal BM (1999) Identification of an NTF2-related factor that binds Ran-GTP and regulates nuclear protein export. Mol Cell Biol 19:8616-8624

    Google Scholar 

  • 9. Bordonne R (2000) Functional characterization of nuclear localization signals in yeast Sm proteins. Mol Cell Biol 20:7943-7954

    CrossRef  Google Scholar 

  • 10. Brahms H, Meheus L, de Brabandere V, Fischer U, Lührmann R (2001) Symmetrical dimethylation of arginine residues in spliceosomal Sm protein B/B’ and the Sm-like protein LSm4, and their interaction with the SMN protein. RNA 7:1531-1542

    CrossRef  Google Scholar 

  • 11. Brahms H, Raymackers J, Union A, de Keyser F, Meheus L, Lührmann R (2000) The C-terminal RG dipeptide repeats of the spliceosomal Sm proteins D1 and D3 contain symmetrical dimethylarginines, which form a major B-cell epitope for anti-Sm autoantibodies. J Biol Chem 275:17122-17129

    CrossRef  Google Scholar 

  • 12. Burge CB, Tuschl T, Sharp PA (1999) Splicing of precursors to mRNA by the spliceosomes. In: Gesteland RF, Cech TR, Atkins JF (eds) The RNA world. Cold Spring Harbour Laboratory Press, New York, pp526-560

    Google Scholar 

  • 13. Calero G, Wilson KF, Ly T, Rios-Steiner JL, Clardy JC, Cerione RA (2002) Structural basis of m7GpppG binding to the nuclear cap-binding protein complex. Nat Struct Biol 9:912-917

    CrossRef  Google Scholar 

  • 14. Carmo-Fonseca M (2002) Understanding nuclear order. Trends Biochem Sci 27:332-334

    CrossRef  Google Scholar 

  • 15. Carvalho T, Almeida F, Calapez A, Lafarga M, Berciano MT, Carmo-Fonseca M (1999) The spinal muscular atrophy disease gene product, SMN: A link between snRNP biogenesis and the Cajal (coiled) body. J Cell Biol 147:715-728

    CrossRef  Google Scholar 

  • 16. Chaillan-Huntington C, Braslavsky CV, Kuhlmann J, Stewart M (2000) Dissecting the interactions between NTF2, RanGDP, and the nucleoporin XFXFG repeats. J Biol Chem 275:5874-5879

    CrossRef  Google Scholar 

  • 17. Coppola JA, Field AS, Luse DS (1983) Promoter-proximal pausing by RNA polymerase II in vitro: transcripts shorter than 20 nucleotides are not capped. Proc Natl Acad Sci USA 80:1251-1255

    Google Scholar 

  • 18. Cougot N, van Dijk E, Babajko S, Seraphin B (2004) ‘Cap-tabolism’. Trends Biochem Sci 29:436-444

    CrossRef  Google Scholar 

  • 19. Coutavas E, Ren M, Oppenheim JD, D’Eustachio P, Rush MG (1993) Characterization of proteins that interact with the cell-cycle regulatory protein Ran/TC4. Nature 366:585-587

    Google Scholar 

  • 20. Cronshaw JM, Krutchinsky AN, Zhang W, Chait BT, Matunis MJ (2002) Proteomic analysis of the mammalian nuclear pore complex. J Cell Biol 158:915-927

    CAS  PubMed  Google Scholar 

  • 21. Darzacq X, Jady BE, Verheggen C, Kiss AM, Bertrand E, Kiss T (2002) Cajal body-specific small nuclear RNAs: a novel class of 2’-O-methylation and pseudouridylation guide RNAs. EMBO J 21:2746-2756

    CrossRef  Google Scholar 

  • 22. Doherty A, Suh S (2000) Structural and mechanistic conservation in DNA ligases. Nucleic Acids Res 28:4051-4058

    CrossRef  Google Scholar 

  • 23. Ellison V, Stillman B (2001) Opening of the clamp: an intimate view of an ATP-driven biological machine. Cell 106:655-660

    CrossRef  Google Scholar 

  • 24. Enünlü I, Papai G, Cserpan I, Udvardy A, Jeang KT, Boros I (2003) Different isoforms of PRIP-interacting protein with methyltransferase domain/trimethylguanosine synthase localizes to the cytoplasm and nucleus. Biochem Biophys Res Commun 309:44-51

    CrossRef  Google Scholar 

  • 25. Fischer U, Liu Q, Dreyfuss G (1997) The SMN-SIP1 complex has an essential role in spliceosomal snRNP biogenesis. Cell 90:1023-1029

    CrossRef  Google Scholar 

  • 26. Fischer U, Sumpter V, Sekine M, Satoh T, Lührmann R (1993) Nucleo-cytoplasmic transport of U snRNPs: definition of a nuclear location signal in the Sm core domain that binds a transport receptor independently of the m3G cap. EMBO J 12:573-583

    Google Scholar 

  • 27. Flaherty SM, Fortes P, Izaurralde E, Mattaj IW, Gilmartin GM (1997) Participation of the nuclear cap binding complex in pre-mRNA 3’ processing. Proc Natl Acad Sci USA 94:11893-11898

    CrossRef  Google Scholar 

  • 28. Fornerod M, Ohno M, Yoshida M, Mattaj IW (1997) CRM1 is an export receptor for leucine-rich nuclear export signals [see comments]. Cell 90:1051-1060

    CAS  PubMed  Google Scholar 

  • 29. Frey MR, Bailey AD, Weiner AM, Matera AG (1999) Association of snRNA genes with coiled bodies is mediated by nascent snRNA transcripts. Curr Biol 9:126-135

    CrossRef  Google Scholar 

  • 30. Frey MR, Matera AG (2001) RNA-mediated interaction of Cajal bodies and U2 snRNA genes. J Cell Biol 154:499-509

    CrossRef  Google Scholar 

  • 31. Friesen WJ, Massenet S, Paushkin S, Wyce A, Dreyfuss G (2001a) SMN, the product of the spinal muscular atrophy gene, binds preferentially to dimethylarginine-containing protein targets. Mol Cell 7:1111-1117

    CrossRef  Google Scholar 

  • 32. Friesen WJ, Paushkin S, Wyce A, Massenet S, Pesiridis GS, Van Duyne G, Rappsilber J, Mann M, Dreyfuss G (2001b) The methylosome, a 20S complex containing JBP1 and pICln, produces dimethylarginine-modified Sm proteins. Mol Cell Biol 21:8289-8300

    CrossRef  Google Scholar 

  • 33. Friesen WJ, Wyce A, Paushkin S, Abel L, Rappsilber J, Mann M, Dreyfuss G (2002) A novel WD repeat protein component of the methylosome binds Sm proteins. J Biol Chem 277:8243-8247

    CrossRef  Google Scholar 

  • 34. Furuichi Y, LaFiandra A, Shatkin AJ (1977) 5’-Terminal structure and mRNA stability. Nature 266:235-239

    Google Scholar 

  • 35. Girard C, Mouaikel J, Neel H, Bertrand E, Bordonne R (2004) Nuclear localization properties of a conserved protuberance in the Sm core complex. Exp Cell Res 299:199-208

    CrossRef  Google Scholar 

  • 36. Görlich D, Dabrowski M, Bischoff FR, Kutay U, Bork P, Hartmann E, Prehn S, Izaurralde E (1997) A novel class of RanGTP binding proteins. J Cell Biol 138:65-80

    CrossRef  Google Scholar 

  • 37. Görlich D, Kraft R, Kostka S, Vogel F, Hartmann E, Laskey RA, Mattaj IW, Izaurralde E (1996a) Importin provides a link between nuclear protein import and U snRNA export. Cell 87:21-32

    CrossRef  Google Scholar 

  • 38. Görlich D, Pante N, Kutay U, Aebi U, Bischoff FR (1996b) Identification of different roles for RanGDP and RanGTP in nuclear protein import. EMBO J 15:5584-5594

    Google Scholar 

  • 39. Görlich D, Prehn S, Laskey RA, Hartmann E (1994) Isolation of a protein that is essential for the first step of nuclear protein import. Cell 79:767-778

    CrossRef  Google Scholar 

  • 40. Gubitz AK, Feng W, Dreyfuss G (2004) The SMN complex. Exp Cell Res 296:51-56

    CrossRef  Google Scholar 

  • 41. Hakansson K, Doherty A, Shuman S, Wigley D (1997) X-ray crystallography reveals a large conformational change during guanyl transfer by mRNA capping enzymes. Cell 89:545-553

    CrossRef  Google Scholar 

  • 42. Hamm J, Darzynkiewicz E, Tahara SM, Mattaj IW (1990) The trimethylguanosine cap structure of U1 snRNA is a component of a bipartite nuclear targeting signal. Cell 62:569-577

    CrossRef  Google Scholar 

  • 43. Hartmuth K, Urlaub H, Vornlocher HP, Will CL, Gentzel M, Wilm M, Lührmann R (2002) Protein composition of human prespliceosomes isolated by a tobramycin affinity-selection method. Proc Natl Acad Sci USA 99:16719-16724

    CrossRef  Google Scholar 

  • 44. Hernandez N (2001) Small nuclear RNA genes: a model system to study fundamental mechanisms of transcription. J Biol Chem 276:26733-26736

    CrossRef  Google Scholar 

  • 45. Hetzer M, Mattaj IW (2000) An ATP-dependent, Ran-independent mechanism for nuclear import of the U1A and U2B" spliceosome proteins. J Cell Biol 148:293-303

    CrossRef  Google Scholar 

  • 46. Hodel AE, Gershon PD, Quiocho FA (1998) Structural basis for sequence-nonspecific recognition of 5’-capped mRNA by a cap-modifying enzyme. Mol Cell 1:443-447

    CrossRef  Google Scholar 

  • 47. Hodel AE, Gershon PD, Shi X, Quiocho FA (1996) The 1.85 Å structure of vaccinia protein VP39: a bifunctional enzyme that participates in the modification of both mRNA ends. Cell 85:247-256

    CrossRef  Google Scholar 

  • 48. Hodel AE, Gershon PD, Shi X, Wang SM, Quiocho FA (1997) Specific protein recognition of an mRNA cap through its alkylated base. Nat Struct Biol 4:350-354

    CrossRef  Google Scholar 

  • 49. Hopper AK, Traglia HM, Dunst RW (1990) The yeast RNA1 gene product necessary for RNA processing is located in the cytosol and apparently excluded from the nucleus. J Cell Biol 111:309-321

    CrossRef  Google Scholar 

  • 50. Hsu PC, Hodel MR, Thomas JW, Taylor LJ, Hagedorn CH, Hodel AE (2000) Structural requirements for the specific recognition of an m7G mRNA cap. Biochemistry 39:13730-13736

    CrossRef  Google Scholar 

  • 51. Hu G, Gershon PD, Hodel AE, Quiocho FA (1999) mRNA cap recognition: dominant role of enhanced stacking interactions between methylated bases and protein aromatic side chains. Proc Natl Acad Sci USA 96:7149-7154

    CrossRef  Google Scholar 

  • 52. Hu G, Oguro A, Li C, Gershon PD, Quiocho FA (2002) The ”cap-binding slot” of an mRNA cap-binding protein: quantitative effects of aromatic side chain choice in the double-stacking sandwich with cap. Biochemistry 41:7677-7687

    CrossRef  Google Scholar 

  • 53. Hu G, Tsai AL, Quiocho FA (2003) Insertion of an N7-methylguanine mRNA cap between two coplanar aromatic residues of a cap-binding protein is fast and selective for a positively charged cap. J Biol Chem 278:51515-51520

    CrossRef  Google Scholar 

  • 54. Huber J, Cronshagen U, Kadokura M, Marshallsay C, Wada T, Sekine M, Lührmann R (1998) Snurportin1, an m3G-cap-specific nuclear import receptor with a novel domain structure. EMBO J 17:4114-4126

    CrossRef  Google Scholar 

  • 55. Huber J, Dickmanns A, Lührmann R (2002) The importin-beta binding domain of snurportin1 is responsible for the Ran- and energy-independent nuclear import of spliceosomal U snRNPs in vitro. J Cell Biol 156:467-479

    CrossRef  Google Scholar 

  • 56. Ingelfinger D, Arndt-Jovin DJ, Lührmann R, Achsel T (2002) The human LSm1-7 proteins colocalize with the mRNA-degrading enzymes Dcp1/2 and Xrnl in distinct cytoplasmic foci. RNA 8:1489-1501

    Google Scholar 

  • 57. Izaurralde E, Lewis J, Gamberi C, Jarmolowski A, McGuigan C, Mattaj IW (1995) A cap-binding protein complex mediating U snRNA export. Nature 376:709-712

    Google Scholar 

  • 58. Izaurralde E, Lewis J, McGuigan C, Jankowska M, Darzynkiewicz E, Mattaj IW (1994) A nuclear cap binding protein complex involved in pre-mRNA splicing. Cell 78:657-668

    CrossRef  Google Scholar 

  • 59. Jacobs EY, Ogiwara I, Weiner AM (2004) Role of the C-terminal domain of RNA polymerase II in U2 snRNA transcription and 3’ processing. Mol Cell Biol 24:846-855

    CrossRef  Google Scholar 

  • 60. Jady BE, Darzacq X, Tucker KE, Matera AG, Bertrand E, Kiss T (2003) Modification of Sm small nuclear RNAs occurs in the nucleoplasmic Cajal body following import from the cytoplasm. EMBO J 22:1878-1888

    CrossRef  Google Scholar 

  • 61. Jäkel S, Görlich D (1998) Importin beta, transportin, RanBP5 and RanBP7 mediate nuclear import of ribosomal proteins in mammalian cells. EMBO J 17:4491-4502

    CrossRef  Google Scholar 

  • 62. Jankowska-Anyszka M, Lamphear BJ, Aamodt EJ, Harrington T, Darzynkiewicz E, Stolarski R, Rhoads RE (1998) Multiple isoforms of eukaryotic protein synthesis initiation factor 4E in Caenorhabditis elegans can distinguish between mono- and trimethylated mRNA cap structures. J Biol Chem 273:10538-10542

    CrossRef  Google Scholar 

  • 63. Jarmolowski A, Boelens WC, Izaurralde E, Mattaj IW (1994) Nuclear export of different classes of RNA is mediated by specific factors. J Cell Biol 124:627-635

    CrossRef  Google Scholar 

  • 64. Jullien D, Görlich D, Laemmli UK, Adachi Y (1999) Nuclear import of RPA in Xenopus egg extracts requires a novel protein XRIPalpha but not importin alpha. EMBO J 18:4348-4358

    CrossRef  Google Scholar 

  • 65. Kambach C, Mattaj IW (1992) Intracellular distribution of the U1A protein depends on active transport and nuclear binding to U1 snRNA. J Cell Biol 118:11-21

    CrossRef  Google Scholar 

  • 66. Kambach C, Mattaj IW (1994) Nuclear transport of the U2 snRNP-specific U2B” protein is mediated by both direct and indirect signalling mechanisms. J Cell Sci 107:1807-1816

    Google Scholar 

  • 67. Kambach C, Walke S, Nagai K (1999a) Structure and assembly of the spliceosomal small nuclear ribonucleoprotein particles. Curr Opin Struct Biol 9:222-230

    CrossRef  Google Scholar 

  • 68. Kambach C, Walke S, Young R, Avis JM, de la Fortelle E, Raker VA, Lührmann R, Li J, Nagai K (1999b) Crystal structures of two Sm protein complexes and their implications for the assembly of the spliceosomal snRNPs. Cell 96:375-387

    CrossRef  Google Scholar 

  • 69. Katahira J, Strasser K, Podtelejnikov A, Mann M, Jung JU, Hurt E (1999) The Mex67p-mediated nuclear mRNA export pathway is conserved from yeast to human. EMBO J 18:2593-2609

    CrossRef  Google Scholar 

  • 70. Keiper BD, Lamphear BJ, Deshpande AM, Jankowska-Anyszka M, Aamodt EJ, Blumenthal T, Rhoads RE (2000) Caenorhabditis elegans. J Biol Chem 275:10590-10596

    CrossRef  Google Scholar 

  • 71. Kiss AM, Jady BE, Darzacq X, Verheggen C, Bertrand E, Kiss T (2002) A Cajal body-specific pseudouridylation guide RNA is composed of two box H/ACA snoRNA-like domains. Nucleic Acids Res 30:4643-4649

    CrossRef  Google Scholar 

  • 72. Krol A, Carbon P, Ebel JP, Appel B (1987) Xenopus tropicalis U6 snRNA genes transcribed by Pol III contain the upstream promoter elements used by Pol II dependent U snRNA genes. Nucleic Acids Res 15:2463-2478

    Google Scholar 

  • 73. Kunkel GR, Maser RL, Calvet JP, Pederson T (1986) U6 small nuclear RNA is transcribed by RNA polymerase III. Proc Natl Acad Sci USA 83:8575-8579

    Google Scholar 

  • 74. Le Hir H, Gatfield D, Izaurralde E, Moore MJ (2001) The exon-exon junction complex provides a binding platform for factors involved in mRNA export and nonsense-mediated mRNA decay. EMBO J 20:4987-4997

    CrossRef  Google Scholar 

  • 75. Le Hir H, Izaurralde E, Maquat LE, Moore MJ (2000) The spliceosome deposits multiple proteins 20-24 nucleotides upstream of mRNA exon-exon junctions. EMBO J 19:6860-6869

    CrossRef  Google Scholar 

  • 76. Lee JY, Chang C, Song H, Moore JD, Yang JK, Kim HK, Kwon S, Suh S (2000) Crystal structure of NAD(+)-dependent DNA ligase: modular architecture and functional implications. EMBO J 19:1119-1129

    CrossRef  Google Scholar 

  • 77. Liou RF, Blumenthal T (1990) trans-spliced Caenorhabditis elegans mRNAs retain trimethylguanosine caps. Mol Cell Biol 10:1764-1768

    Google Scholar 

  • 78. Liu Q, Dreyfuss G (1996) A novel nuclear structure containing the survival of motor neurons protein. EMBO J 15:3555-3565

    CAS  PubMed  Google Scholar 

  • 79. Lockless SW, Cheng HT, Hodel AE, Quiocho FA, Gershon PD (1998) Recognition of capped RNA substrates by VP39, the vaccinia virus-encoded mRNA cap-specific 2’-O-methyltransferase. Biochemistry 37:8564-8574

    CrossRef  Google Scholar 

  • 80. Lounsbury KM, Beddow AL, Macara IG (1994) A family of proteins that stabilize the Ran/TC4 GTPase in its GTP-bound conformation. J Biol Chem 269:11285-11290

    Google Scholar 

  • 81. Makarov EM, Makarova OV, Urlaub H, Gentzel M, Will CL, Wilm M, Lührmann R (2002) Small nuclear ribonucleoprotein remodeling during catalytic activation of the spliceosome. Science 298:2205-2208

    CrossRef  Google Scholar 

  • 82. Marcotrigiano J, Gingras AC, Sonenberg N, Burley SK (1997) Cocrystal structure of the messenger RNA 5’ cap-binding protein (eIF4E) bound to 7-methyl-GDP. Cell 89:951-961

    CrossRef  Google Scholar 

  • 83. Massenet S, Pellizzoni L, Paushkin S, Mattaj IW, Dreyfuss G (2002) The SMN complex is associated with snRNPs throughout their cytoplasmic assembly pathway. Mol Cell Biol 22:6533-6541

    CrossRef  Google Scholar 

  • 84. Masuyama K, Taniguchi I, Kataoka N, Ohno M (2004) RNA length defines RNA export pathway. Genes Dev 18:2074-2085

    CrossRef  Google Scholar 

  • 85. Matsuo H, Li H, McGuire A, M Fletcher C, M Gingras AC, Sonenberg N, Wagner G (1997) Structure of translation factor eIF4E bound to m7GDP and interaction with 4E-binding protein. Nat Struct Biol 4:717-724

    CrossRef  Google Scholar 

  • 86. Mattaj IW, De Robertis EM (1985) Nuclear segregation of U2 snRNA requires binding of specific snRNP proteins. Cell 40:111-118

    CrossRef  Google Scholar 

  • 87. Mazza C, Ohno M, Segref A, Mattaj IW, Cusack S (2001) Crystal structure of the human nuclear cap binding complex. Mol Cell 8:383-396

    CrossRef  Google Scholar 

  • 88. Mazza C, Segref A, Mattaj IW, Cusack S (2002) Large-scale induced fit recognition of an m(7)GpppG cap analogue by the human nuclear cap-binding complex. EMBO J 21:5548-5557

    CrossRef  Google Scholar 

  • 89. Medlin JE, Uguen P, Taylor A, Bentley DL, Murphy S (2003) The C-terminal domain of pol II and a DRB-sensitive kinase are required for 3’ processing of U2 snRNA. EMBO J 22:925-934

    CrossRef  Google Scholar 

  • 90. Meister G, Buhler D, Pillai R, Lottspeich F, Fischer U (2001a) A multiprotein complex mediates the ATP-dependent assembly of spliceosomal U snRNPs. Nat Cell Biol 3:945-949

    CrossRef  Google Scholar 

  • 91. Meister G, Eggert C, Buhler D, Brahms H, Kambach C, Fischer U (2001b) Methylation of Sm proteins by a complex containing PRMT5 and the putative U snRNP assembly factor pICln. Curr Biol 11:1990-1994

    CrossRef  Google Scholar 

  • 92. Meister G, Eggert C, Fischer U (2002) SMN-mediated assembly of RNPs: a complex story. Trends Cell Biol 12:472-478

    CrossRef  Google Scholar 

  • 93. Meister G, Hannus S, Plottner O, Baars T, Hartmann E, Fakan S, Laggerbauer B, Fischer U (2001c) SMNrp is an essential pre-mRNA splicing factor required for the formation of the mature spliceosome. EMBO J 20:2304-2314

    CrossRef  Google Scholar 

  • 94. Melchior F, Paschal B, Evans J, Gerace L (1993a) Inhibition of nuclear protein import by nonhydrolyzable analogues of GTP and identification of the small GTPase Ran/TC4 as an essential transport factor [published erratum appears in J Cell Biol 1994 Jan;124(1-2):217]. J Cell Biol 123:1649-1659

    CrossRef  Google Scholar 

  • 95. Melchior F, Weber K, Gerke V (1993b) A functional homologue of the RNA1 gene product in Schizosaccharomyces pombe: purification, biochemical characterization, and identification of a leucine-rich repeat motif. Mol Biol Cell 4:569-581

    Google Scholar 

  • 96. Miyoshi H, Dwyer DS, Keiper BD, Jankowska-Anyszka M, Darzynkiewicz E, Rhoads RE (2002) Discrimination between mono- and trimethylated cap structures by two isoforms of Caenorhabditis elegans eIF4E. EMBO J 21:4680-4690

    CrossRef  Google Scholar 

  • 97. Moore MS, Blobel G (1993) The GTP-binding protein Ran/TC4 is required for protein import into the nucleus. Nature 365:661-663

    Google Scholar 

  • 98. Moroianu J, Blobel G, Radu A (1995) Previously identified protein of uncertain function is karyopherin alpha and together with karyopherin beta docks import substrate at nuclear pore complexes. Proc Natl Acad Sci USA 92:2008-2011

    Google Scholar 

  • 99. Mouaikel J, Bujnicki JM, Tazi J, Bordonne R (2003a) Sequence-structure-function relationships of Tgs1, the yeast snRNA/snoRNA cap hypermethylase. Nucleic Acids Res 31:4899-4909

    CrossRef  Google Scholar 

  • 100. Mouaikel J, Narayanan U, Verheggen C, Matera AG, Bertrand E, Tazi J, Bordonne R (2003b) Interaction between the small-nuclear-RNA cap hypermethylase and the spinal muscular atrophy protein, survival of motor neuron. EMBO Rep 4:616-622

    CrossRef  Google Scholar 

  • 101. Mouaikel J, Verheggen C, Bertrand E, Tazi J, Bordonne R (2002) Hypermethylation of the cap structure of both yeast snRNAs and snoRNAs requires a conserved methyltransferase that is localized to the nucleolus. Mol Cell 9:891-901

    CrossRef  Google Scholar 

  • 102. Murthy KG, Park P, Manley JL (1991) A nuclear micrococcal-sensitive, ATP-dependent exoribonuclease degrades uncapped but not capped RNA substrates. Nucleic Acids Res 19:2685-2692

    Google Scholar 

  • 103. Narayanan U, Ospina JK, Frey MR, Hebert MD, Matera A (2002) SMN, the spinal muscular atrophy protein, forms a pre-import snRNP complex with snurportin1 and importin beta. Hum Mol Genet 11:1785-1795

    CrossRef  Google Scholar 

  • 104. Narayanan U, Achsel T, Lührmann R, Matera AG (2004) Coupled in vitro import of UsnRNPs and SMN, the spinal muscular atrophy protein. Mol Cell 16: 223-34

    CrossRef  Google Scholar 

  • 105. Neuman de Vegvar HE, Dahlberg JE (1990) Nucleocytoplasmic transport and processing of small nuclear RNA precursors. Mol Cell Biol 10:3365-3375

    Google Scholar 

  • 106. Niedzwiecka A, Marcotrigiano J, Stepinski J, Jankowska-Anyszka M, Wyslouch-Cieszynska A, Dadlez M Gingras AC, Mak P, Darzynkiewicz E, Sonenberg N, Burley SK, Stolarski R (2002) Biophysical studies of eIF4E cap-binding protein: recognition of mRNA 5’ cap structure and synthetic fragments of eIF4G and 4E-BP1 proteins. J Mol Biol 319:615-635

    CrossRef  Google Scholar 

  • 107. Ohno M, Kataoka N, Shimura Y (1990) A nuclear cap binding protein from HeLa cells. Nucleic Acids Res 18:6989-6995

    Google Scholar 

  • 108. Ohno M, Segref A, Bachi A, Wilm M, Mattaj IW (2000) PHAX, a mediator of U snRNA nuclear export whose activity is regulated by phosphorylation. Cell 101:187-198

    CrossRef  Google Scholar 

  • 109. Ohno M, Segref A, Kuersten S, Mattaj IW (2002) Identity elements used in export of mRNAs. Mol Cell 9:659-671

    CrossRef  Google Scholar 

  • 110. Ohtsubo M, Okazaki H, Nishimoto T (1989) The RCC1 protein, a regulator for the onset of chromosome condensation locates in the nucleus and binds to DNA. J Cell Biol 109:1389-1397

    CrossRef  Google Scholar 

  • 111. Ossareh-Nazari B, Maison C, Black BE, Levesque L, Paschal BM, Dargemont C (2000) RanGTP-binding protein NXT1 facilitates nuclear export of different classes of RNA in vitro. Mol Cell Biol 20:4562-4571

    CrossRef  Google Scholar 

  • 112. Palacios I, Hetzer M, Adam SA, Mattaj IW (1997) Nuclear import of U snRNPs requires importin beta. EMBO J 16:6783-6792

    CrossRef  Google Scholar 

  • 113. Paraskeva E, Izaurralde E, Bischoff FR, Huber J, Kutay U, Hartmann E, Lührmann R, Görlich D (1999) CRM1-mediated recycling of snurportin 1 to the cytoplasm. J Cell Biol 145:255-264

    CrossRef  Google Scholar 

  • 114. Paule MR, White RJ (2000) Survey and summary: transcription by RNA polymerases I and III. Nucleic Acids Res 28:1283-1298

    CrossRef  Google Scholar 

  • 115. Paushkin S, Gubitz AK, Massenet S, Dreyfuss G (2002) The SMN complex, an assemblyosome of ribonucleoproteins. Curr Opin Cell Biol 14:305-312

    CrossRef  Google Scholar 

  • 116. Pellizzoni L, Kataoka N, Charroux B, Dreyfuss G (1998) A novel function for SMN, the spinal muscular atrophy disease gene product, in pre-mRNA splicing. Cell 95:615-624

    CrossRef  Google Scholar 

  • 117. Plessel G, Fischer U, Lührmann R (1994) m3G cap hypermethylation of U1 small nuclear ribonucleoprotein (snRNP) in vitro: evidence that the U1 small nuclear RNA-(guanosine-N2)-methyltransferase is a non-snRNP cytoplasmic protein that requires a binding site on the Sm core domain. Mol Cell Biol 14:4160-4172

    Google Scholar 

  • 118. Pu WT, Krapivinsky GB, Krapivinsky L, Clapham DE (1999) pICln inhibits snRNP biogenesis by binding core spliceosomal proteins. Mol Cell Biol 19:4113-4120

    Google Scholar 

  • 119. Quiocho FA, Hu G, Gershon PD (2000) Structural basis of mRNA cap recognition by proteins. Curr Opin Struct Biol 10:78-86

    CrossRef  Google Scholar 

  • 120. Raker VA, Plessel G, Lührmann R (1996) The snRNP core assembly pathway: identification of stable core protein heteromeric complexes and an snRNP subcore particle in vitro. EMBO J 15:2256-2269

    Google Scholar 

  • 121. Reddy R, Henning D, Das G, Harless M, Wright D (1987) The capped U6 small nuclear RNA is transcribed by RNA polymerase III. J Biol Chem 262:75-81

    Google Scholar 

  • 122. Reichelt R, Holzenburg A, Buhle EL Jr, Jarnik M, Engel A, Aebi U (1990) Correlation between structure and mass distribution of the nuclear pore complex and of distinct pore complex components. J Cell Biol 110:883-894

    CrossRef  Google Scholar 

  • 123. Ribbeck K, Lipowsky G, Kent HM, Stewart M, Görlich D (1998) NTF2 mediates nuclear import of Ran. EMBO J 17:6587-6598

    CrossRef  Google Scholar 

  • 124. Romac JM, Graff DH, Keene JD (1994) The U1 small nuclear ribonucleoprotein (snRNP) 70K protein is transported independently of U1 snRNP particles via a nuclear localization signal in the RNA-binding domain. Mol Cell Biol 14:4662-4670

    Google Scholar 

  • 125. Rout MP, Aitchison JD, Suprapto A, Hjertaas K, Zhao Y, Chait BT (2000) The yeast nuclear pore complex. Composition, architecture, and transport mechanism. J Cell Biol 148:635-652

    CrossRef  CAS  PubMed  Google Scholar 

  • 126. Ruszczynska K, Kamienska-Trela K, Wojcik J, Stepinski J, Darzynkiewicz E, Stolarski R (2003) Charge distribution in 7-methylguanine regarding cation-pi interaction with protein factor eIF4E. Biophys J 85:1450-1456

    Google Scholar 

  • 127. Saitoh H, Dasso M (1995) The RCC1 protein interacts with Ran, RanBP1, hsc70, and a 340-kDa protein in Xenopus extracts. J Biol Chem 270:10658-10663

    CrossRef  Google Scholar 

  • 128. Salditt-Georgieff M, Harpold M, Chen-Kiang S, Darnell JE Jr (1980) The addition of 5’ cap structures occurs early in hnRNA synthesis and prematurely terminated molecules are capped. Cell 19:69-78

    CrossRef  Google Scholar 

  • 129. Schaffert N, Hossbach M, Heintzmann R, Achsel T, Lührmann R (2004) RNAi knockdown of hPrp31 leads to an accumulation of U4/U6 di-snRNPs in Cajal bodies. EMBO J 23:3000-3009

    CrossRef  Google Scholar 

  • 130. Segref A, Mattaj IW, Ohno M (2001) The evolutionarily conserved region of the U snRNA export mediator PHAX is a novel RNA-binding domain that is essential for U snRNA export. RNA 7:351-360

    CrossRef  Google Scholar 

  • 131. Shatkin AJ (1976) Capping of eucaryotic mRNAs. Cell 9:645-653

    CrossRef  Google Scholar 

  • 132. Shimotohno K, Kodama Y, Hashimoto J, Miura KI (1977) Importance of 5’-terminal blocking structure to stabilize mRNA in eukaryotic protein synthesis. Proc Natl Acad Sci USA 74:2734-2738

    Google Scholar 

  • 133. Shuman S (2002) What messenger RNA capping tells us about eukaryotic evolution. Nat Rev Mol Cell Biol 3:619-625

    CrossRef  Google Scholar 

  • 134. Sleeman JE, Ajuh P, Lamond AI (2001) snRNP protein expression enhances the formation of Cajal bodies containing p80-coilin and SMN. J Cell Sci 114:4407-4419

    Google Scholar 

  • 135. Sleeman JE, Lamond AI (1999) Newly assembled snRNPs associate with coiled bodies before speckles, suggesting a nuclear snRNP maturation pathway. Curr Biol 9:1065-1074

    CrossRef  Google Scholar 

  • 136. Stanek D, Rader SD, Klingauf M, Neugebauer KM (2003) Targeting of U4/U6 small nuclear RNP assembly factor SART3/p110 to Cajal bodies. J Cell Biol 160:505-516

    CrossRef  Google Scholar 

  • 137. Stark H, Dube P, Lührmann R, Kastner B (2001) Arrangement of RNA and proteins in the spliceosomal U1 small nuclear ribonucleoprotein particle. Nature 409:539-542

    Google Scholar 

  • 138. Stoffler D, Feja B, Fahrenkrog B, Walz J, Typke D, Aebi U (2003) Cryo-electron tomography provides novel insights into nuclear pore architecture: implications for nucleocytoplasmic transport. J Mol Biol 328:119-130

    CrossRef  Google Scholar 

  • 139. Tomoo K, Shen X, Okabe K, Nozoe Y, Fukuhara S, Morino S, Ishida T, Taniguchi T, Hasegawa H, Terashima A, Sasaki M, Katsuya Y, Kitamura K, Miyoshi H, Ishikawa M, Miura K (2002) Crystal structures of 7-methylguanosine 5’-triphosphate (m(7)GTP)- and P(1)-7-methylguanosine-P(3)-adenosine-5’,5’-triphosphate (m(7)GpppA)-bound human full-length eukaryotic initiation factor 4E: biological importance of the C-terminal flexible region. Biochem J 362:539-544

    CrossRef  Google Scholar 

  • 140. Tomoo K, Shen X, Okabe K, Nozoe Y, Fukuhara S, Morino S, Sasaki M, Taniguchi T, Miyagawa H, Kitamura K, Miura K, Ishida T (2003) Structural features of human initiation factor 4E, studied by X-ray crystal analyses and molecular dynamics simulations. J Mol Biol 328:365-383

    CrossRef  Google Scholar 

  • 141. Uguen P, Murphy S (2003) The 3’ ends of human pre-snRNAs are produced by RNA polymerase II CTD-dependent RNA processing. EMBO J 22:4544-4554

    CrossRef  Google Scholar 

  • 142. Uguen P, Murphy S (2004) 3’-box-dependent processing of human pre-U1 snRNA requires a combination of RNA and protein co-factors. Nucleic Acids Res 32:2987-2994

    CrossRef  Google Scholar 

  • 143. Van Doren K, Hirsh D (1990) mRNAs that mature through trans-splicing in Caenorhabditis elegans have a trimethylguanosine cap at their 5’ termini. Mol Cell Biol 10:1769-1772

    Google Scholar 

  • 144. van Hoof A, Lennertz P, Parker R (2000a) Three conserved members of the RNase D family have unique and overlapping functions in the processing of 5S, 5.8S, U4, U5, RNase MRP and RNase P RNAs in yeast. EMBO J 19:1357-1365

    CrossRef  Google Scholar 

  • 145. van Hoof A, Lennertz P, Parker R (2000b) Yeast exosome mutants accumulate 3’-extended polyadenylated forms of U4 small nuclear RNA and small nucleolar RNAs. Mol Cell Biol 20:441-452

    CrossRef  Google Scholar 

  • 146. Weis K, Mattaj IW, Lamond AI (1995) Identification of hSRP1 alpha as a functional receptor for nuclear localization sequences. Science 268:1049-1053

    Google Scholar 

  • 147. Will CL, Lührmann R (2001) Spliceosomal UsnRNP biogenesis, structure and function. Curr Opin Cell Biol 13:290-301

    CrossRef  Google Scholar 

  • 148. Yokoyama N, Hayashi N, Seki T, Pante N, Ohba T, Nishii K, Kuma K, Hayashida T, Miyata T, Aebi U, Fukui M, Nishimoto T (1995) A giant nucleopore protein that binds Ran/TC4. Nature 376:184-188

    Google Scholar 

  • 149. Yong J, Golembe TJ, Battle DJ, Pellizzoni L, Dreyfuss G (2004) snRNAs contain specific SMN-binding domains that are essential for snRNP assembly. Mol Cell Biol 24:2747-2756

    CrossRef  Google Scholar 

  • 150. Yong J, Pellizzoni L, Dreyfuss G (2002) Sequence-specific interaction of U1 snRNA with the SMN complex. EMBO J 21:1188-1196

    CrossRef  Google Scholar 

  • 151. Young PJ, Le TT, thi Man N, Burghes AH, Morris GE (2000) The relationship between SMN, the spinal muscular atrophy protein, and nuclear coiled bodies in differentiated tissues and cultured cells. Exp Cell Res 256:365-374

    CrossRef  Google Scholar 

  • 152. Yu YT, Shu MD, Steitz JA (1998) Modifications of U2 snRNA are required for snRNP assembly and pre-mRNA splicing. EMBO J 17:5783-5795

    CrossRef  Google Scholar 

  • 153. Zhao X, Yu YT (2004) Pseudouridines in and near the branch site recognition region of U2 snRNA are required for snRNP biogenesis and pre-mRNA splicing in Xenopus oocytes. RNA 10:681-690

    CrossRef  Google Scholar 

  • 154. Zhu Y, Qi C, Cao WQ, Yeldandi AV, Rao MS, Reddy JK (2001) Cloning and characterization of PIMT, a protein with a methyltransferase domain, which interacts with and enhances nuclear receptor coactivator PRIP function. Proc Natl Acad Sci USA 98:10380-10385

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Henri Grosjean

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Dickmanns, A., Ficner, R. Role of the 5’-cap in the biogenesis of spliceosomal snRNPs. In: Grosjean, H. (eds) Fine-Tuning of RNA Functions by Modification and Editing. Topics in Current Genetics, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b106799

Download citation

Publish with us

Policies and ethics