Modelling signalling pathways – a yeast approach

  • Bodil Nordlander
  • Edda Klipp
  • Bente Kofahl
  • Stefan Hohmann
Part of the Topics in Current Genetics book series (TCG, volume 13)


MAP kinase pathways are conserved signalling systems in eukaryotes that control stress responses, cell growth, and proliferation, as well as differentiation. Here, we discuss and compare the feedback control mechanisms of two very well studied yeast signalling systems: the pheromone response pathway and the osmosensing HOG pathway. Mathematical models have recently been generated, allowing in silico analysis of signalling properties of both pathways. To advance our understanding of pathway control and to make modelling less dependent on parameter estimation, quantitative time course data of high precision and resolution need to be generated in the future and implemented into mathematical models. We expect that a combination of quantitative analyses and modelling/simulation will provide novel insight into the rules with which signalling pathways control cellular processes.


Green Fluorescent Protein Fluorescence Resonance Energy Transfer Turgor Pressure MAPK Cascade Pheromone Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1. Alepuz PM, de Nadal E, Zapater M, Ammerer G, Posas F (2003) Osmostress-induced transcription by Hot1 depends on a Hog1-mediated recruitment of the RNA Pol II. EMBO J 22:2433-2442CrossRefPubMedGoogle Scholar
  2. 2. Alepuz PM, Jovanovic A, Reiser V, Ammerer G (2001) Stress-induced MAP kinase Hog1 is part of transcription activation complexes. Mol Cell 7:767-777CrossRefPubMedGoogle Scholar
  3. 3. Asthagiri AR, Lauffenburger DA (2000) Bioengineering models of cell signaling. Annu Rev Biomed Eng 2:31-53CrossRefPubMedGoogle Scholar
  4. 4. Bardwell L (2004) A walk-through of the yeast mating pheromone response pathway. Peptides 25:1465-1476CrossRefPubMedGoogle Scholar
  5. 5. Barkai N, Leibler S (1997) Robustness in simple biochemical networks. Nature 387:913-917CrossRefPubMedGoogle Scholar
  6. 6. Bhalla US, Iyengar R (2001) Robustness of the bistable behavior of a biological signaling feedback loop. Chaos 11:221-226CrossRefPubMedGoogle Scholar
  7. 7. Bluthgen N, Herzel H (2003) How robust are switches in intracellular signaling cascades? J Theor Biol 225:293-300CrossRefPubMedGoogle Scholar
  8. 8. Brightman FA, Fell DA (2000) Differential feedback regulation of the MAPK cascade underlies the quantitative differences in EGF and NGF signalling in PC12 cells. FEBS Lett 482:169-174CrossRefPubMedGoogle Scholar
  9. 9. Bustin SA (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29:23-39CrossRefPubMedGoogle Scholar
  10. 10. de Nadal E, Alepuz PM, Posas F (2002) Dealing with osmostress through MAP kinase activation. EMBO Rep 3:735-740CrossRefPubMedGoogle Scholar
  11. 11. De Nadal E, Zapater M, Alepuz PM, Sumoy L, Mas G, Posas F (2004) The MAPK Hog1 recruits Rpd3 histone deacetylase to activate osmoresponsive genes. Nature 427:370-374CrossRefPubMedGoogle Scholar
  12. 12. Dihazi H, Kessler R, Eschrich K (2004) HOG-pathway induced phosphorylation and activation of 6-phosphofructo-2-kinase are essential for glycerol accumulation and yeast cell proliferation under hyperosmotic stress. J Biol Chem 279:23961-23968CrossRefPubMedGoogle Scholar
  13. 13. Dohlman HG, Thorner JW (2001) Regulation of G protein-initiated signal transduction in yeast: paradigms and principles. Annu Rev Biochem 70:703-754CrossRefPubMedGoogle Scholar
  14. 14. Elion EA (2000) Pheromone response, mating and cell biology. Curr Opin Microbiol 3:573-581CrossRefPubMedGoogle Scholar
  15. 15. Elion EA (2001) The Ste5p scaffold. J Cell Sci 114:3967-3978PubMedGoogle Scholar
  16. 16. Enger J, Goksör M, Ramser K, Hagberg P, Hanstorp D (2004) Optical tweezers applied to a microfluidic system. Lab Chip 4:196-200CrossRefPubMedGoogle Scholar
  17. 17. Ericsson M, Hanstorp D, Hagberg P, Enger J, Nystrom T (2000) Sorting out bacterial viability with optical tweezers. J Bacteriol 182:5551-5555CrossRefPubMedGoogle Scholar
  18. 18. Escote X, Zapater M, Clotet J, Posas F (2004) Hog1 mediates cell-cycle arrest in G1 phase by the dual targeting of Sic1. Nat Cell Biol 6:997-1002CrossRefPubMedGoogle Scholar
  19. 19. Ferrell JE Jr (2002) Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr Opin Cell Biol 14:140-148CrossRefPubMedGoogle Scholar
  20. 20. Ghaemmaghami S, Huh WK, Bower K, Howson RW, Belle A, Dephoure N, O'Shea EK, Weissman JS (2003) Global analysis of protein expression in yeast. Nature 425:737-741CrossRefPubMedGoogle Scholar
  21. 21. Goldbeter A, Koshland DE Jr (1984) Ultrasensitivity in biochemical systems controlled by covalent modification. Interplay between zero-order and multistep effects. J Biol Chem 259:14441-14447PubMedGoogle Scholar
  22. 22. Gordon GW, Berry G, Liang XH, Levine B, Herman B (1998) Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophys J 74:2702-2713PubMedGoogle Scholar
  23. 23. Gustin MC, Albertyn J, Alexander M, Davenport K (1998) MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 62:1264-1300PubMedGoogle Scholar
  24. 24. Heinrich R, Neel BG, Rapoport TA (2002) Mathematical models of protein kinase signal transduction. Mol Cell 9:957-970Google Scholar
  25. 25. Herskowitz I (1995) MAP kinase pathways in yeast: for mating and more. Cell 80:187-197CrossRefPubMedGoogle Scholar
  26. 26. Herskowitz I (1997) Building organs and organisms: elements of morphogenesis exhibited by budding yeast. Cold Spring Harb Symp Quant Biol 62:57-63PubMedGoogle Scholar
  27. 27. Hohmann S (2002) Osmotic adaptation in yeast–control of the yeast osmolyte system. Int Rev Cytol 215:149-187PubMedGoogle Scholar
  28. 28. Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66:300-372CrossRefPubMedGoogle Scholar
  29. 29. Huang CY, Ferrell JE Jr (1996) Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc Natl Acad Sci USA 93:10078-10083CrossRefPubMedGoogle Scholar
  30. 30. Kholodenko BN (2000) Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades. Eur J Biochem 267:1583-1588CrossRefPubMedGoogle Scholar
  31. 31. Klipp E, Nordlander B, Krüger R, Gennemark P, Hohmann S (2004) The dynamic response of yeast cells to osmotic shock - a systems biology approach. Nat Biotechnol under revisionGoogle Scholar
  32. 32. Kofahl B, Klipp E (2004) Modelling the dynamics of the yeast pheromone pathway. Yeast 21:831-850CrossRefPubMedGoogle Scholar
  33. 33. Krauss G (2001) Biochemistry of Signal Transduction and Regulation. Second Edition, Wiley-VCH, Weinheim ISBN 3-527-30378-2Google Scholar
  34. 34. Kusari AB, Molina DM, Sabbagh W Jr, Lau CS, Bardwell L (2004) A conserved protein interaction network involving the yeast MAP kinases Fus3 and Kss1. J Cell Biol 164:267-277CrossRefPubMedGoogle Scholar
  35. 35. Lippincott-Schwartz J, Snapp E, Kenworthy A (2001) Studying protein dynamics in living cells. Nat Rev Mol Cell Biol 2:444-456CrossRefPubMedGoogle Scholar
  36. 36. Llorens M, Nuno JC, Rodriguez Y, Melendez-Hevia E, Montero F (1999) Generalization of the theory of transition times in metabolic pathways: a geometrical approach. Biophys J 77:23-36PubMedGoogle Scholar
  37. 37. MacBeath G (2002) Protein microarrays and proteomics. Nat Genet 32 Suppl:526-532CrossRefGoogle Scholar
  38. 38. Manney TR (1983) Expression of the BAR1 gene in Saccharomyces cerevisiae: induction by the alpha mating pheromone of an activity associated with a secreted protein. J Bacteriol 155:291-301PubMedGoogle Scholar
  39. 39. Marsh L, Neiman AM, Herskowitz I (1991) Signal transduction during pheromone response in yeast. Annu Rev Cell Biol 7:699-728CrossRefPubMedGoogle Scholar
  40. 40. Nielsen UB, Cardone MH, Sinskey AJ, MacBeath G, Sorger PK (2003) Profiling receptor tyrosine kinase activation by using Ab microarrays. Proc Natl Acad Sci USA 100:9330-9335CrossRefPubMedGoogle Scholar
  41. 41. O'Rourke SM, Herskowitz I, O'Shea EK (2002) Yeast go the whole HOG for the hyperosmotic response. Trends Genet 18:405-412CrossRefPubMedGoogle Scholar
  42. 42. Raitt DC, Posas F, Saito H (2000) Yeast Cdc42 GTPase and Ste20 PAK-like kinase regulate Sho1-dependent activation of the Hog1 MAPK pathway. EMBO J 19:4623-4631CrossRefPubMedGoogle Scholar
  43. 43. Reiser V, Salah SM, Ammerer G (2000) Polarized localization of yeast Pbs2 depends on osmostress, the membrane protein Sho1 and Cdc42. Nat Cell Biol 2:620-627CrossRefPubMedGoogle Scholar
  44. 44. Rieseberg M, Kasper C, Reardon KF, Scheper T (2001) Flow cytometry in biotechnology. Appl Microbiol Biotechnol 56:350-360CrossRefPubMedGoogle Scholar
  45. 45. Sato N, Kawahara H, Toh-e A, Maeda T (2003) Phosphorelay-regulated degradation of the yeast Ssk1p response regulator by the ubiquitin-proteasome system. Mol Cell Biol 23:6662-6671CrossRefPubMedGoogle Scholar
  46. 46. Seet BT, Pawson T (2004) MAPK signaling: Sho business. Curr Biol 14:R708-710CrossRefPubMedGoogle Scholar
  47. 47. Specht KM, Shokat KM (2002) The emerging power of chemical genetics. Curr Opin Cell Biol 14:155-159CrossRefPubMedGoogle Scholar
  48. 48. Sprague GF, Cullen PJ, Goehring AS (2004) Yeast signal transduction: regulation and interface with cell biology. Adv Exp Med Biol 547:91-105PubMedGoogle Scholar
  49. 49. Sprague GFJ, Thorner JW (1992) Pheromone response and signal transduction during the mating process of Saccharomyces cerevisiae. In: Jones EW, Pringle JR, Broach JR (eds) The molecular and cellular biology of the yeast Saccharomyces. Gene expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 657-744Google Scholar
  50. 50. Swameye I, Muller TG, Timmer J, Sandra O, Klingmuller U (2003) Identification of nucleocytoplasmic cycling as a remote sensor in cellular signaling by databased modeling. Proc Natl Acad Sci USA 100:1028-1033CrossRefPubMedGoogle Scholar
  51. 51. Támas MJ, Hohmann S (2003) The osmotic stress response of Saccharomyces cerevisiae. Topics Curr Genet 1:121-200Google Scholar
  52. 52. Támas MJ, Hohmann S (2003) The osmotic stress response of Saccharomyces cerevisiae. Topics Curr Genet 1:121-200Google Scholar
  53. 53. Tamás MJ, Karlgren S, Bill RM, Hedfalk K, Allegri L, Ferreira M, Thevelein JM, Rydstrom J, Mullins JG, Hohmann S (2003) A short regulatory domain restricts glycerol transport through yeast Fps1p. J Biol Chem 278:6337-6345CrossRefPubMedGoogle Scholar
  54. 54. Tyson JJ, Chen KC, Novak B (2003) Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol 15:221-231CrossRefPubMedGoogle Scholar
  55. 55. van Drogen F, Peter M (2001) MAP kinase dynamics in yeast. Biol Cell 93:63-70CrossRefPubMedGoogle Scholar
  56. 56. van Drogen F, Peter M (2002) MAP kinase cascades: scaffolding signal specificity. Curr Biol 12:R53-55CrossRefPubMedGoogle Scholar
  57. 57. van Drogen F, Stucke VM, Jorritsma G, Peter M (2001) MAP kinase dynamics in response to pheromones in budding yeastGoogle Scholar
  58. 58. van Drogen F, Stucke VM, Jorritsma G, Peter M (2001) MAP kinase dynamics in response to pheromones in budding yeast. Nat Cell Biol 3:1051-1059CrossRefPubMedGoogle Scholar
  59. 59. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034CrossRefPubMedGoogle Scholar
  60. 60. Wang Y, Ge Q, Houston D, Thorner J, Errede B, Dohlman HG (2003) Regulation of Ste7 ubiquitination by Ste11 phosphorylation and the Skp1-Cullin-F-box complex. J Biol Chem 278:22284-22289CrossRefPubMedGoogle Scholar
  61. 61. Versele M, Lemaire K, Thevelein JM (2001) Sex and sugar in yeast: two distinct GPCR systems. EMBO Rep 2:574-579CrossRefPubMedGoogle Scholar
  62. 62. Widmann C, Gibson S, Jarpe MB, Johnson GL (1999) Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 79:143-180PubMedGoogle Scholar
  63. 63. Winson MK, Davey HM (2000) Flow cytometric analysis of microorganisms. Methods 21:231-240CrossRefPubMedGoogle Scholar
  64. 64. Wolanin PM, Thomason PA, Stock JB (2002) Histidine protein kinases: key signal transducers outside the animal kingdom. Genome Biol 3:REVIEWS3013CrossRefPubMedGoogle Scholar
  65. 65. Yi TM, Kitano H, Simon MI (2003) A quantitative characterization of the yeast heterotrimeric G protein cycle. Proc Natl Acad Sci USA 100:10764-10769CrossRefPubMedGoogle Scholar
  66. 66. Zeitlinger J, Simon I, Harbison CT, Hannett NM, Volkert TL, Fink GR, Young RA (2003) Program-specific distribution of a transcription factor dependent on partner transcription factor and MAPK signaling. Cell 113:395-404CrossRefPubMedGoogle Scholar

Authors and Affiliations

  • Bodil Nordlander
    • 1
  • Edda Klipp
    • 2
  • Bente Kofahl
    • 2
  • Stefan Hohmann
    • 1
  1. 1.Department of Cell and Molecular Biology, Göteborg University, Box 462, S-40530 GöteborgSweden
  2. 2.Berlin Center for Genome Based Bioinformatics (BCB), Max-Planck Institute for Molecular Genetics, Dept. Vertebrate Genomics, Ihnestr. 73, 14195 BerlinGermany

Personalised recommendations