From isolation to integration, a systems biology approach for building the Silicon Cell

  • Jacky L. SnoepEmail author
  • Hans V. Westerhoff
Part of the Topics in Current Genetics book series (TCG, volume 13)


In the last decade, the field now commonly referred to as systems biology has developed rapidly. With the sequencing of whole genomes and the development of analysis methods to measure many of the cellular components, we have now entered the realm of complete descriptions at a cellular level. Although we have been seeing that larger and larger systems were being described, making a description complete is much more important than just adding additional components. The possibility of making complete descriptions will cause a paradigm shift in our approaches, on a theoretical, as well as a modeling and an experimental level. We will here present our view on systems biology and specifically focus on modeling strategies to build cellular models on the basis of detailed enzyme kinetic information: an approach advocated in the Silicon Cell project ( making use of the JWS Online database of kinetic models (


Steady State Flux Metabolic Control Analysis Elementary Flux Mode Silicon Cell Detailed Kinetic Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1. Bakker BM, Assmus, HE, Bruggeman F, Haanstra JR, Klipp E, Westerhoff HV (2002) Network-based selectivity of antiparasitic inhibitors. Mol Biol Rep 29:1-52CrossRefPubMedGoogle Scholar
  2. 2. Bhartiya S, Rawool S, Venkatesh, KV (2003) Dynamic model of Escherichia coli tryptophan operon shows an optimal structural design. Eur J Biochem 270:2644-2651CrossRefPubMedGoogle Scholar
  3. 3. Chassagnole C, Fell DA, Rais B, Kudla B, Mazat J-P (2001) Control of the threonine-synthesis pathway in Escherichia coli: a theoretical and experimental approach. Biochem J 356:415-423CrossRefPubMedGoogle Scholar
  4. 4. Clarke BL (1981) Complete set of steady states for the general stoichiometric dynamical system. J Chem Phys 75:4970-4979CrossRefGoogle Scholar
  5. 5. Cronwright GR, Rohwer JM, Prior BA (2003) Metabolic control analysis of glycerol synthesis in Saccharomyces cerevisiae. Appl Environ Microbiol 68:4448-4456CrossRefGoogle Scholar
  6. 6. Curien G, Ravanel S, Dumas R (2003) A kinetic model of the branch-point between the methionine and threonine biosynthesis pathways in Arabidopsis thaliana. Eur J Biochem 270:1-13CrossRefGoogle Scholar
  7. 7. De la Fuente A, Snoep JL, Westerhoff HV, Mendes P (2002) Metabolic control in integrated biochemical systems. Eur J Biochem 269:4399-4408CrossRefPubMedGoogle Scholar
  8. 8. Galazzo JL, Bailey JE (1990) Fermentation pathway kinetics and metabolic flux control in suspended and immobilized Saccharomyces cerevisiae. Enz Microb Technol. 12:162-172Google Scholar
  9. 9. Heinrich R, Rapoport TA (1974) A linear steady-state treatment of enzymatic chains. Eur J Biochem 42:89-95CrossRefPubMedGoogle Scholar
  10. 10. Helfert S, Estevez AM, Bakker B, Michels P, Clayton C (2001) Roles of triosephosphate isomerase and aerobic metabolism in Trypanosoma brucei. Biochem J 357: 117-125CrossRefPubMedGoogle Scholar
  11. 11. Hofmeyr JHS, Westerhoff HV (2001) Building the cellular puzzle. J Theor Biol 208:261-285CrossRefPubMedGoogle Scholar
  12. 12. Hoefnagel MHN, Starrenburg MJC, Martens DE, Hugenholtz J, Kleerebezem M, Van Swam II, Bongers R, Westerhoff HV, Snoep JL (2002) Metabolic engineering of lactic acid bacteria, the combined approach: kinetic modelling, metabolic control and experimental analysis. Microbiology 148: 1003-1013. PubMedGoogle Scholar
  13. 13. Hoefnagel MHN, Van Der Burgt A, Martens DE, Hugenholtz J, Snoep JL (2002) Time dependent responses of glycolytic intermediates in a detailed glycolytic model of Lactococcus lactis during glucose run-out experiments. Mol Biol Rep 29: 157-161CrossRefPubMedGoogle Scholar
  14. 14. Holzhütter H-G (2004) The principle of flux minimization and its application to estimate stationary fluxes in metabolic networks. Eur J Biochem 271:2905-2922CrossRefPubMedGoogle Scholar
  15. 15. Hynne F, Dano S, Sorensen PG (2001) Full-scale model of glycolysis in Saccharomyces cerevisiae. Biophys Chem 94:121-163CrossRefPubMedGoogle Scholar
  16. 16. Kacser H, Burns JA (1973) The control of flux. In: Davies DD (ed) Rate control of biological processes. Cambridge University Press, London, pp 65-104Google Scholar
  17. 17. Kholodenko BN, Demin OV, Moehren G, Hoek JB (1999) Quantification of Short Term Signaling by the Epidermal Growth Factor Receptor J Biol Chem 274:30169-30181Google Scholar
  18. 18. Koster JG, Destrée OHJ, Westerhoff HV (1988) Kinetics of Histone Gene Expression during Early Development of Xenopus laevis. J Theor Biol 135:139-167PubMedGoogle Scholar
  19. 19. Lambeth MJ, Kushmerick MJ, (2002) A Computational Model for Glycogenolysis in Skeletal Muscle Ann Biomed Eng 30: 808-827Google Scholar
  20. 20. Maher AD, Kuchel PW, Ortega F, de Atauri P, Centelles J, Cascante M (2003) Mathematical modelling of the urea cycle. Eur J Biochem 270, 3953-3961Google Scholar
  21. 21. Martins AM, Mendes P, Cordeiro C, Freire AP (2001) In situ kinetic analysis of glyoxalase I and glyoxalase II in Saccharomyces cerevisiae. Eur J Biochem 268:3930-3936CrossRefPubMedGoogle Scholar
  22. 22. Mendes P (1997) Biochemistry by numbers: simulation of biochemical pathways with Gepasi 3. TIBS 22:361-363PubMedGoogle Scholar
  23. 23. Mulquiney PJ, Kuchel PW, (1999) Model of 2,3-bisphosphoglycerate metabolism in the human erythrocyte based on detailed enzyme kinetic equations: computer simulation and metabolic control analysis. Biochem J 342: 597-604CrossRefPubMedGoogle Scholar
  24. 24. Poolman MG, Fell DA, Thomas S (2000) Modelling photosynthesis and its control. J Exp Bot 51:319-328CrossRefGoogle Scholar
  25. 25. Olivier BG and Snoep JL( 2004) Web-based kinetic modelling using JWS Online. Bioinformatics 20:2143-2144CrossRefPubMedGoogle Scholar
  26. 26. Olivier BG, Rohwer JM, Hofmeyr JHS (2002) Modelling cellular processes with Python and Scipy. Mol Biol Rep 29:249-254CrossRefPubMedGoogle Scholar
  27. 27. Olsen LF, Hauser MJB, Kummer U, (2003) Mechanism of protection of peroxidase activity by oscillatory dynamics. Eur J Biochem 270:2796-2804CrossRefPubMedGoogle Scholar
  28. 28. Price ND, Papin JA, Schilling CH, Palsson BO (2003) Genome-scale microbial in silico models: the constraints-based approach. TRENDS Biotechnol 21:162-169CrossRefPubMedGoogle Scholar
  29. 29. Richard P, Bakker BM, Teusink B, Westerhoff HV, Van Dam K (1993) Synchronisation of glycolytic oscillations in intact yeast cells. In: Schuster S, Rigoulet M, Ouhabi R, Mazat JP (Eds) Modern trends in Biothermokinetics. Plenum Press, London, pp: 413-416Google Scholar
  30. 30. Richard P, Teusink B, Westerhoff HV, Van Dam K (1994) Around the growth phase transition S. cerevisiae's make-up favours sustained oscillations of intracellular metabolites. FEBS Lett 318:80-82CrossRefGoogle Scholar
  31. 31. Richard P, Teusink B, Van Dam K, Westerhoff HV (1996) Acetaldehyde mediates the synchronization of sustained glycolytic oscillations in yeast-cell populations. Eur J Biochem 235:238-241CrossRefPubMedGoogle Scholar
  32. 32. Reijenga K (2002) Dynamic control of yeast glycolysis. PhD thesis, Vrije Universiteit Amsterdam.Google Scholar
  33. 33. Rohwer JM, Meadow ND, Roseman S, Westerhoff HV and Postma PW (2000) Understanding glucose transport by the bacterial phosphoenolpyruvate:glycose phosphotransferase system on the basis of kinetic measurements in vitro. J Biol Chem 275:34909-34921CrossRefPubMedGoogle Scholar
  34. 34. Rohwer JM, Botha FC (2001) Analysis of sucrose accumulation in the sugar cane culm on the basis of in vitro kinetic data. Biochem J 358:437-445CrossRefPubMedGoogle Scholar
  35. 35. Sauro HM (1991) SCAMP: a general-purpose simulator and metabolic control analysis program. CABIOS 9:441-450 Google Scholar
  36. 36. Sauro HM (2000) Jarnac: a system for interactive metabolic analysis. In: Hofmeyr JHSH, Rohwer JM, Snoep JL (eds) Animating the cellular map: Proceedings of the 9th international meeting on biothermokinetics. Stellenbosch University Press, Stellenbosch, pp: 221-228Google Scholar
  37. 37. Schilling CH, Letscher D, Palsson BO (2000) Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. J Theor Biol 203:229-248CrossRefPubMedGoogle Scholar
  38. 38. Schuster S, Fell DA, Dandekar T (2000) A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nature Biotech 18:326-332CrossRefGoogle Scholar
  39. 39. Schuster S, Hilgetag C (1994) On elementary flux modes in biochemical reaction systems in steady state. J Biol Syst 2:165-182CrossRefGoogle Scholar
  40. 40. Snoep JL, Hoefnagel MHN, Westerhoff HV (2004) Metabolic engineering of branched systems: redirecting the main pathway flux. In: Westerhoff HV, Kholodenko B (eds) Metabolic engineering in the post-genomic era. Horizon Scientific Press, Norwich, UK pp 357-377Google Scholar
  41. 41. Teusink B, Passarge J, Reijenga CA, Esgalhado E, Van der Weijden CC, Schepper M, Walsh MC, Bakker BM, Van Dam K, Westerhoff HV, Snoep JL (2000) Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. Eur J Biochem 267:5313-5329CrossRefPubMedGoogle Scholar
  42. 42. Tyson JJ, Novak B (2001) Regulation of the eukaryotic cell cycle: Molecular antagonism, hysteresis, and irreversible transitions. J Theor Biol 210:249-263CrossRefPubMedGoogle Scholar
  43. 43. Westerhoff HV, Van Dam (1987) Thermodynamics and control in biological free-energy transduction. Elsevier, Amsterdam, The Netherlands.Google Scholar
  44. 44. Wiechert W (2001) 13C metabolic flux analysis. Metab Eng 3:95-206Google Scholar

Authors and Affiliations

  1. 1.Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland, 7602South Africa
  2. 2.Department of Molecular Cell Physiology, Vrije Universiteit, De Boelelaan 1087, NL-1081 HV AmsterdamThe Netherlands

Personalised recommendations