Skip to main content

Fundamentals of Optical Telescopes

  • 2875 Accesses

Part of the Astrophysics and Space Science Library book series (ASSL,volume 360)

This chapter provides a general overview of optical telescope history, astronomical requirements, optical aberrations, optical telescope system design, and modern optical theory. In this chapter, important optical concepts such as angular resolution, light collecting power, field of view, telescope efficiency, atmospheric seeing, geometrical aberrations, wavefront error, ray tracing, merit function, optical and modulation transfer function, point spread function, Strehl ratio, and imaging spatial frequency are introduced. The concept discussions are arranged in a systematic way so that readers can learn step-by-step. The chapter provides many important formulas of optical system design and evaluation. Emphases are placed on both the traditional geometric aberrational theory and the modern optical theory. At the end of the chapter, image properties of a segmented mirror system are also discussed in detail.

Keywords

  • Spatial Frequency
  • Point Spread Function
  • Modulation Transfer Function
  • Spherical Aberration
  • Chromatic Aberration

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/b105475_1
  • Chapter length: 86 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   299.00
Price excludes VAT (USA)
  • ISBN: 978-0-387-88791-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   379.99
Price excludes VAT (USA)
Hardcover Book
USD   379.99
Price excludes VAT (USA)
Fig. 1.1.
Fig. 1.2.
Fig. 1.3.
Fig. 1.4.
Fig. 1.5.
Fig. 1.6.
Fig. 1.7.
Fig. 1.8.
Fig. 1.9.
Fig. 1.10.
Fig. 1.11.
Fig. 1.12.
Fig. 1.13.
Fig. 1.14.
Fig. 1.15.
Fig. 1.16.
Fig. 1.17.
Fig. 1.18.
Fig. 1.19.
Fig. 1.20.
Fig. 1.21.
Fig. 1.22.
Fig. 1.23.
Fig. 1.24.
Fig. 1.25.
Fig. 1.26.
Fig. 1.27.
Fig. 1.28.
Fig. 1.29.
Fig. 1.30.
Fig. 1.31.
Fig. 1.32.
Fig. 1.33.
Fig. 1.34.
Fig. 1.35.
Fig. 1.36.
Fig. 1.37.
Fig. 1.38.
Fig. 1.39.
Fig. 1.40.
Fig. 1.41.
Fig. 1.42.
Fig. 1.43.
Fig. 1.44.
Fig. 1.45.
Fig. 1.46.
Fig. 1.47.
Fig. 1.48.
Fig. 1.49.
Fig. 1.50.
Fig. 1.51.
Fig. 1.52.
Fig. 1.53.

References

  • Anderson, G. and Tullson, D., 2006, Photon sieve telescope, SPIE Proc., 6265, 626523.

    CrossRef  Google Scholar 

  • Bahner, K., 1968, Large and very large telescope projects and consideration, ESO Bulletin, No. 5.

    Google Scholar 

  • Barlow, B. V., 1975, The astronomical telescope, Wykeham Publications (London) Ltd, London.

    Google Scholar 

  • Baum, W. A., 1962, The detection and measurement of faint astronomical sources, in Astronomical techniques, ed. Hiltner, WA,, Astronomical Techniques, Chicago.

    Google Scholar 

  • Born, M. and Wolf, E., 1980, Principles of optics, 6th ed. Pergamon Press, Oxford.

    Google Scholar 

  • Bowen, I. S., 1964, Telescopes, AJ, 69, 816.

    CrossRef  ADS  Google Scholar 

  • Cao, C., 1986, Optical system for large field telescopes, Conference on large field telescope design, Nanjing Astronomical Instrument Institute, Nanjing.

    Google Scholar 

  • Cheng, J., 1988, Field of view, star guiding and general design of large Schmidt telescope, Proceedings of ESO conference on VLT and their instruments, Munich, Germany.

    Google Scholar 

  • Cheng, J. and Liang, M., 1990, High image quality Mersenne-Schmidt telescope, SPIE Proc. Adv. Technol. Telescope (IV), 1236, p243–249.

    Google Scholar 

  • Dalrymple, N. E., 2002, Mirror seeing, ATST project CDR report #0003, NOAO.

    Google Scholar 

  • Dawe, J. A., 1984, The determination of the vignetting function of a Schmidt telescope, in Astronomy with Schmidt telescopes, ed. Capaccioli, M, E. Reidel Pub. Co., Dordrecht.

    Google Scholar 

  • Dierickx, P., et al., 2004, OWL phase A, status report, Proc. SPIE, 5489, 391.

    Google Scholar 

  • Disney, M. J., 1972, Optical arrays, Mon. Not. RAS., 160, 213–232.

    CrossRef  ADS  Google Scholar 

  • Disney, M. J., 1978, Optical telescope of the future, ESO Conf. Proc. 23, 145–163.

    Google Scholar 

  • Emerson, D., 2005, Lecture notes of NRAO summer school on radio interferometry, National radio astronomy observatory.

    Google Scholar 

  • Foy, R. and Labeyrie, A., 1985, Feasibility of adaptive telescope with laser probe, Astron. Astrophys., 152, L29.

    ADS  Google Scholar 

  • Gascoigne, C. S. R., 1968, Some recent advances in the optics of large telescopes, Quart. J. RAS., 9, 18.

    Google Scholar 

  • Gascoigne, C. S. R., 1973, Recent advances in astronomical optics, Appl. Opt., 12, 1419.

    CrossRef  ADS  Google Scholar 

  • Glassner, A. S., 1989, An introduction to ray tracing, Academic Press, London.

    MATH  Google Scholar 

  • Gramham Smith, F., and Thompson, J. H., 1988, Optics, 2nd edition, John Wiley & Sons Ltd., New York.

    Google Scholar 

  • Hecht, H. and Zajac, A., 1974, Optics, Addison-Wesley Pub. Co, London.

    Google Scholar 

  • Jiang, S. 1986, Review of multi-object spectroscope, Conference on large field telescope, Nanjing Astronomical Instrument Institute, Nanjing.

    Google Scholar 

  • Kraus, J. D., 1986, Radio astronomy, Cygnus-Quasar Books, Powell, Ohio.

    Google Scholar 

  • Learner, R., 1980, Astronomy through the telescope, Evans Brothers, London.

    Google Scholar 

  • Liang, M., et al., 2005, The LSST optical system, Bull. Am. Astron. Soc., 37, 2005.

    Google Scholar 

  • Lo, A. S. and Arenberg, J., 2006, New architectures for space astronomical telescopes using Fresnel optics, SPIE Proc., 6265, 626522.

    CrossRef  Google Scholar 

  • Pawsey, J. L., Payne-Scott, R. and McCready, L. L., 1946, Radio frequency energy from the sun, Nature, 157, 158.

    CrossRef  ADS  Google Scholar 

  • Racine, R., 1984, Astronomical seeing at Mauna Kea and in particular at the CFHT, IAU Colloq. No. 79, 235.

    ADS  Google Scholar 

  • Reynolds, G. O., et al., 1989, The new physical optics notebook: tutorials in Fourier optics, SPIE Press,

    Google Scholar 

  • Roddier, F., 1979, Effect of atmosphere turbulence on the formation of infrared and visible images, J. of optics, 10, 299–303.

    Google Scholar 

  • Roddier, F., 1984, Measuring atmospheric seeing, in IAU Colloq. No. 79, eds. Ulrich MH and Kjar K, Garching bei Munchen, Germany.

    Google Scholar 

  • Schnapf, J. L. and Baylor, D. A., 1987, How photoreceptor cells respond to light, Sci. Am., 256, 40–47.

    CrossRef  Google Scholar 

  • Schroeder, D. J., 2000, Astronomical optics, Academic Press, San Diego.

    Google Scholar 

  • Shao, L.-Z. and Su, D.-Q., 1983, Improvement of chromatic aberration of an aspherical plate corrector for prime focus, Opt. Acta, 30, 1267–1272.

    CrossRef  Google Scholar 

  • Slyusarev, G. G., 1984, Aberration and optical design theory, 2nd ed. Adam Hilger Ltd., Bristol.

    Google Scholar 

  • Steward, E. G., 1983, Fourier optics: an introduction, Ellis Horwood Limited, Chichester.

    Google Scholar 

  • Stoltzmann, D. E., 1983, Resolution criteria for diffraction-limited telescopes, Sky Telescope, 65, 176–181.

    Google Scholar 

  • Su, D.-Q., 1963, Discussion on corrector design for reflecting telescope system, Acta Astron, 11.

    Google Scholar 

  • Su, D.-Q., et al., 1967, Automatic design of corrector system for Cassegrain telescopes, Acta Astron, 17.

    Google Scholar 

  • Su, D.-Q. and Wang, Y.-L., 1974, Optimization of aberrations for astronomical optical system, Acta Astron, 15.

    Google Scholar 

  • Su, D.-Q. and Wang, L.-J., 1982, A flat-field reflecting focal reducer, Opt. Acta, 29, 391–394.

    CrossRef  ADS  Google Scholar 

  • Su, D.-Q., et al., 1983, Spot diagram and lest square optimization, Nanjing Astronomical Instrument Institute, Nanjing.

    Google Scholar 

  • Vernin, J., 1986, Astronomical site selection, a new meteorological approach, SPIE Proc., 628, 142.

    CrossRef  ADS  Google Scholar 

  • Wetherell, W. B., 1974, Image quality criteria for the Large Space Telescope, in Space optics, eds. Thompson B. J. and Shannon R. R., National Academy of Science, Washington.

    Google Scholar 

  • Wetherell, W. B., 1980, The calculation of image quality, in Applied optics and optical engineering, Vol. 8, Academic Press, New York.

    Google Scholar 

  • Willstroop, R. V., 1984, The Mersenne-Schmidt telescope, in IAU Colloq. No. 79, eds. Ulrich M. H. and Kjar K., Garching bei Munchen, Germany.

    Google Scholar 

  • Wilson, R. N, 1968, Corrector systems for Cassegrain telescopes, Appl. Opt., 7, 253–263.

    CrossRef  ADS  Google Scholar 

  • Wilson, R. N, 2004, Reflecting telescope optics I, 2nd ed. Springer, Berlin.

    Google Scholar 

  • Wynne, C. G., 1967, Afocal correctors for Paraboloidal mirrors, Appl. Opt., 6, 1227–1231.

    CrossRef  ADS  Google Scholar 

  • Yaitskova, N., et al., 2003, Analytical study of diffraction effects in extremely large segmented telescopes, J. Opt. Soc. Am. A, 20, 1563–1575.

    CrossRef  ADS  Google Scholar 

  • Yi, M., 1982, Design of aspherical correctors for Cassegrain system, Acta Astron., 23, 398.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cheng, J. (2009). Fundamentals of Optical Telescopes. In: The Principles of Astronomical Telescope Design. Astrophysics and Space Science Library, vol 360. Springer, New York, NY. https://doi.org/10.1007/b105475_1

Download citation