Skip to main content

Shear effects on suspended cells

  • Chapter
  • First Online:
Book cover Bioreactor Systems and Effects

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 44))

Abstract

Shear has been mainly considered in the technical literature as a destructive element, when applied to microorganisms and cells. Indeed, most of the research work addressing the subject aims at the identification of damaging levels of shear on a given culture. The present work is focused on the effects of shear on suspended cultures before the damaging levels are attained. Inspection of the literature reveals that shear may influence growth rate, cellular volume, metabolite production rate and distribution, and membrane permeabilities. Available devices for study and evaluation of shear effects on suspended cultures are described and critically reviewed.

The review reveals the possibility of an influence of the liquid dynamics on the kinetics of the biochemical process. This is relevant for bioreactor design and scale up, and stresses the importance of using structural bioreactor models in order to describe the hydrodynamics of the system.

This review is based on lectures presented by the author at the University College, London, on July 1988

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkinson B, Mavituna F (1983) Biochemical Engineering and Biotechnology Handbook. Macmillan, Suffolk

    Google Scholar 

  2. Bliem R, Katinger H (1988) Tibtech 6: 224

    Google Scholar 

  3. Oosterhuis NMG (1983) in: “Advances in Fermentation”, Wheatland Journals Ltd., Hertsd., England, p 191

    Google Scholar 

  4. Oosterhuis NMG (1984) Ph. D. Thesis, Delft University of Technology

    Google Scholar 

  5. Kossen NWF, Oosterhuis NMG (1985) in: Biotechnology, Vol II, Chap. 24, Rehm NJ, Reed J (eds) VCH, Weinheim

    Google Scholar 

  6. Sweere APJ, Luyben KChAM, Kossen NWF (1987) Enzyme Microb. Technol. 9: 386

    Google Scholar 

  7. Johnston RE, Thring MW (1957) Pilot Plant, Models and Scale Up in Chemical Engineering, McGraw Hill, New York

    Google Scholar 

  8. Jordan DG (1968) “Chemical Process Development” Schoen HM and McKetta JJ (eds) Wiley, New York Vol. 6, part 1–2

    Google Scholar 

  9. Taguchi H, Imanaka T, Teramoto S, Takatsu M, Sato M (1986) J. Ferment Technol 46: 823

    Google Scholar 

  10. Takei H, Misusawa K, Yoshida F (1975) J Ferment Technol 53: 151

    Google Scholar 

  11. Roels JA (1983) Energetics and Kinetics in Biotechnology, Elsevier, Amsterdam

    Google Scholar 

  12. Bajpai RK, Reuss M (1982) Can J Chem Eng 60: 384

    Google Scholar 

  13. Gibbs SG, Loy DF, Debelak KA, Tanner RD (1987) in: Biotechnology Processes, Ho and Oldshue (eds), AIChE p 6

    Google Scholar 

  14. Margaritis A, Wallace JB (1984) Biotechnology 3: 447

    Google Scholar 

  15. Van Brunt J (1987) Biotechnology 5: 1133

    Google Scholar 

  16. Knight P (1988) Biotechnology 6: 507

    Google Scholar 

  17. Merchuk JC (1988) Encontre Latino-Americano de Biotechnologia, OEA, San Paulo (July 1988)

    Google Scholar 

  18. Oldshue JY (1983) Mixing Technology, McGraw-Hill, New York

    Google Scholar 

  19. Weetman RJ, Oldshue JY (1988) Power, Flow and Shear Characteristics of Mixing Impellers Proc. 6th European Conference on Mixing, Pravia Italy, p 43

    Google Scholar 

  20. Oldshue JY (1983) Genetic Engineering News, p 46

    Google Scholar 

  21. Metzner AB, Otto RE (1957) AIChE J 3: 13

    Google Scholar 

  22. Calderbank PH, Moo-Young M (1961) Trans Inst Chem Engrs 39: 337

    Google Scholar 

  23. Ducla JM, Desplanches H, Chevalier JL (1983) Chem Eng Comm 21: 29

    Google Scholar 

  24. Stein WA (1986) Chem Eng Process 20, 137

    Google Scholar 

  25. Sinskey AJ, Fleischaker RJ, Tuo NA, Giard GJ, Wang DIC (1981) Ann. NY, Acad Sci 369: 47

    Google Scholar 

  26. Hu WS (1983) Ph. D. Thesis, MIT

    Google Scholar 

  27. Crougham MS, Hamel JF, Wang DIC (1987) Biotechnol Bioeng 29: 130

    Google Scholar 

  28. Wallis GB (1969) One-Dimensional Two-Phase Flow, McGraw-Hill, N.Y.

    Google Scholar 

  29. Rushton JH, Costic EW, Everett HJ (1950) Chem Eng Prog 46: 467

    Google Scholar 

  30. Nishikawa M, Kato H, Hashimoto K (1977) Ind Eng Chem Process Des Dev 16: 133

    Google Scholar 

  31. Nakano N, Yoshida F (1980) Ind Eng Chem Process Des Dev 19: 190

    Google Scholar 

  32. Kawase Y, Moo-Young M (1986) Chem Eng Commun 40: 67

    Google Scholar 

  33. Popovic M, Robinson CW (1984) Proceedings of the 34th Canadian Chemical Engineering Congress, Quebec City, p 238

    Google Scholar 

  34. Ueyama K, Miyauchi T (1976) Kagaku Kogaku Rombusho 2: 595

    Google Scholar 

  35. Ueyama K, Miyauchi T (1979) AIChE J 25: 258

    Google Scholar 

  36. Yang Z, Rustmeyer U, Buchholz R, Onken U (1986) Chem Eng Comm 49: 51

    Google Scholar 

  37. Molerus O, Kurtin M (1986) Chem Engng Sci 41: 2685

    Google Scholar 

  38. Joshi JB, Sharma MM (1979) Trans Instn Chem Engrs 57: 244

    Google Scholar 

  39. Zehner P (1986) Int Chem Eng 26: 22

    Google Scholar 

  40. Camposano A, Chain EB, Gualandi G (1958) 7th International Congress of Microbiology, Stockholm, Sweden (August 1958)

    Google Scholar 

  41. Pitt DE, Bull AT (1982) Trans Br Micol Soc 78: 97

    Google Scholar 

  42. Metz B (1976) Ph. D. Thesis, Delft University of Technology, The Netherlands

    Google Scholar 

  43. Konig B, Seewald Ch, Schugerl K (1981) Eur J Appl Microb Biotechnol 12: 205

    Google Scholar 

  44. Ujcova E, Fend Z, Musilcova M, Scichert L (1980) Biotechnol Bioeng 22: 237

    Google Scholar 

  45. Bronnenmeier R, MÄrkl M (1982) Biotechnol Bioeng 24: 553

    Google Scholar 

  46. MÄrkl H, Bronnenmeier R (1985) Biotechnology, Rehm HJ, Reed J (eds) H. Brauer (vol ed) vol II, Chap 18, VCH, Weinheim

    Google Scholar 

  47. Tanaka H, Takahashi J, Veda J (1975) J Ferment Technol 53: 18

    Google Scholar 

  48. Reuss M (1988) Chem Eng Technol 11: 178

    Google Scholar 

  49. Wase JD, Ratwate AM (1985) Appl Microbiol Biotechnol 22: 325

    Google Scholar 

  50. Wase JD, Patel YR (1985) J Gen Microbiol 131: 725

    Google Scholar 

  51. Wase JD, Patel YR (1985) J Gen Microbiol 131: 725

    Google Scholar 

  52. Yerushalmi L, Volesky B (1985) Biotechnol Bioeng 27: 1297

    Google Scholar 

  53. Funahashi H, Maehara M, Taguchi I, Yoshida T (1987) J Chem Eng Japan 20: 16

    Google Scholar 

  54. McNeil B, Kristiansen B (1987) Biotechnology Letters 9: 101

    Google Scholar 

  55. Silva HJ, Cortinas T, Ertola JR (1987) J Chem Tech Biotechnol 40: 41

    Google Scholar 

  56. Dewey CF, Bussolari RS, Gimbrone MA, Davies DF (1981) J Biomech Engin 103: 177

    Google Scholar 

  57. Folkman J, Moscona A (1987) Nature 273: 345

    Google Scholar 

  58. Hollis TM, Ferrone RA (1974) Experimental and Molecular Pathology 20: 1

    Google Scholar 

  59. De Forrest JM, Hollis TM (1980) Experimental and Molecular Pathology 32: 217

    Google Scholar 

  60. Stathopoulos NA, Hellums JD (1985) Biotechnol Bioeng 27: 1021

    Google Scholar 

  61. Frangos JA, McIntre LV, Eskin SG (1988) Biotechnol Bioeng 32: 1053

    Google Scholar 

  62. Petersen JF, McIntre LV, Papoutsakis ET (1988) J Biotechnology 7: 229

    Google Scholar 

  63. Handa A, Emery AM, Spier RE (1987) 4th Europeqan Congress on Biotechnology, Neijsell OM, Van der Meer RR, Lyuben KChAM (eds) THP-291, Vol 3 p 601

    Google Scholar 

  64. Tanaka H (1981) Biotechnol Bioeng 23: 1203

    Google Scholar 

  65. Fowler MW (1982) Prog Ind Microb 17: 207

    Google Scholar 

  66. Meijer JJ, Van Gulik WM, Ten Hopen JJG, Luyben KChAM (1987) Proc., 4th European Congress on Biotechnology, Meijssel, van der Meer and Luyben (eds) Vol. 2, Elsevier, Amsterdam, p 409

    Google Scholar 

  67. Scragg AH, Allan EJ, Leckie F (1988) Enzyme Microb Technol 10: 361

    Google Scholar 

  68. Hixson AW, Crowell JH (1931) Ind Chem Eng 23: 923

    Google Scholar 

  69. Tanaka H, Semba H, Jitsufuchi T, Harada H (1988) Biotechnology Letters 10: 485

    Google Scholar 

  70. Sherman P (1970) Industrial Rheology: With Particular Reference to Food, Pharmaceuticals and Cosmetics, Academic Press, NY

    Google Scholar 

  71. Midler M, Finn KR (1966) Biotechnol Bioeng 8: 71

    Google Scholar 

  72. Smith CG, Greenfield PF, Randerson DH (1987) Biotechnol Tech 1: 39

    Google Scholar 

  73. Schürch U, Kramer H, Einsele A, Widmer F, Eppenberger HM (1988) J Biotechnology 7: 179

    Google Scholar 

  74. Chittur KK, McIntre LV, Rich RR (1988) Biotechnology Prog 4: 89

    Google Scholar 

  75. Crougham MS, Wang DIC (1989) Biotechnol Bioeng 33: XXX

    Google Scholar 

  76. Wutke M, Schügerl K (1988) Modern Approaches to Animal Cell Technology, Spier RE, Griffiths (eds) Butterworths, London, p 297

    Google Scholar 

  77. Edwards N, Beeton S, Bull AT, Merchuk JC (1989) Appl Microbiol Biotech (in press)

    Google Scholar 

  78. Merchuk JC, Edwards N (1988) UK Patent Application

    Google Scholar 

  79. Young TB (1979) Ann NY Acad Sci 326: 165

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag

About this chapter

Cite this chapter

Merchuk, J.C. (1991). Shear effects on suspended cells. In: Bioreactor Systems and Effects. Advances in Biochemical Engineering/Biotechnology, vol 44. Springer, Berlin, Heidelberg. https://doi.org/10.1007/Bfb0000748

Download citation

  • DOI: https://doi.org/10.1007/Bfb0000748

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54094-6

  • Online ISBN: 978-3-540-47400-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics