Skip to main content

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 133))

  • 65 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adachi M, Suematsu S, Kondo T, Ogasawara J, Tanaka T, Yoshida N, Nagata S (1995) Targeted mutation in the Fas gene causes hyperplasia in peripheral lymphoid organs and liver. Nature Genet 11:294–300

    Google Scholar 

  • Adachi Y, Bradford BU, Gao W, Bojes HK, Thurman RG (1994) Inactivation of Kupffer cells prevents early alcohol-induced liver injury. Hepatology 20:453–460

    Google Scholar 

  • Adam-Klages S, Adam D, Wiegmann K, Struve S, Kolanus W, Schneider-Metgener J, Krönke M (1996) FAN, a novel WD-repeat protein, couples the p55 TNF-receptor to neutral sphingomyelinase. Cell 86:937–947

    Google Scholar 

  • Adamson GM, Billings RE (1992) Tumor necrosis factor induced oxidative stress in isolated mouse hepatocytes. Arch Biochem Biophys 294:223–229

    Google Scholar 

  • Adamson GM, Billings RE (1993) Cytokine toxicity and induction of NO synthase activity in cultured mouse hepatocytes. Toxicol Appl Pharmacol 119:100–107

    Google Scholar 

  • Adjei PN, Kaufmann SH, Leung W-Y, Mao F, Gores GJ (1996) Selective induction of apoptosis in Hep 3B cells by toposiomerase I inhibitors: evidence for a protease-dependent pathway that does not activate cysteine protease P32. J Clin Invest 98:2588–2596

    Google Scholar 

  • Aggarwal BB, Vilcek J (eds) (1992) Tumor necrosis factors. Structure, function and mechanisms of action. Dekker, New York

    Google Scholar 

  • Aguilar HI, Botla R, Arora AS, Bronk SF, Gores GJ (1996) Induction of the mitochondrial permeability transition by protease activity in rats: a mechanism of hepatocyte necrosis. Gastroenterology 110:558–566

    Google Scholar 

  • Ankarcrona M, Dypbukt JM, Bonfoco E, Zhivotovsky B, Orrenius S, Lipton SA, Nicotera P (1995) Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 15:961–973

    Google Scholar 

  • Arora AS, Jones BJ, Patel TC, Bronk SF, Gores GJ (1997) Ceramide induces hepatocyte cell death through disruption of mitochondrial function in the rat. Hepatology 25:958–963

    Google Scholar 

  • Barriault C, Audet M, Yousef IM, Tuchweber B (1995) Effect of agents which modify reticuloendothelial function on acute phalloidin-induced lethality and hepatotoxicity in mice. Toxicol Appl Pharmacol 131:206–215

    Google Scholar 

  • Bate CA, Taverne J, Playfair JH (1989) Soluble malarial antigens are toxic and induce the production of tumor necrosis factor in vivo. Immunol 66:600–605

    Google Scholar 

  • Bathal PS, Powell LW, Mackay IR (1982) Apoptosis in autoimmune chronic active Hepatitis (CAH). Hepatol 2:154–155

    Google Scholar 

  • Battersby C, Egerton WS, Balderson G, Kerr JF, Burnett W (1974) Another look at rejection in pig liver homografts. Surgery 76:617–623

    Google Scholar 

  • Bedossa P, Peltier E, Terris B, Franco D, Poynard T (1995) Transforming growth factor-beta 1 (TGF-beta1) and TGF-beta1 receptors in normal, cirrhotic, and neoplastic human livers. Hepatology 21:760–766

    Google Scholar 

  • Benedetti A, Jezequel AM, Orlandi F (1988) A quantitative evaluation of apoptotic bodies in rat liver. Liver 8:172–177

    Google Scholar 

  • Beutler B (ed) (1992) Tumor necrosis factors. The molecules and their emerging role in medicine. Raven, New York

    Google Scholar 

  • Biava C, Mukhlova-Montiel M (1965) Electron microscopic observation on councilman-like acidophilic bodies and other forms of acidophilic changes in human liver cells. Am J Pathol 46:775–802

    Google Scholar 

  • Blazka ME, Wilmer JL, Holladay SD, Wilson RE, Luster MI (1995) Role of proinflammatory cytokines in acetaminophen hepatotoxicity. Toxicol Appl Pharmacol 133:43–52

    Google Scholar 

  • Blazka ME, Elwell MR, Holladay SD, Wilson RE, Luster MI (1996) Histopathology of acetaminophen-induced liver changes: role of interleukin 1 alpha and tumor necrosis factor alpha. Toxicol Pathol 24:181–189

    Google Scholar 

  • Böe R, T, Gjertsen, Vintermyr OK, Houge G, Lanotte M, Döskeland SO (1991) The protein phosphatase inhibitor okadaic acid induces morphological changes typical of apoptosis in mammalian cells. Exp Cell Res 195:237–246

    Google Scholar 

  • Bohlinger I, Leist M, Barsig J, Uhlig S, Tiegs G, Wendel A (1995) Interleukin-1 and nitric oxide protect against tumor necrosis-factor alpha-induced liver injury through distinct pathways. Hepatology 22:1829–1837

    Google Scholar 

  • Bohlinger I, Leist M, Gantner F, Angermüller S, Tiegs G, Wendel A (1996) DNA-fragmentation in mouse organs during endotoxic shock. Am J Pathol 149:1381–1393

    Google Scholar 

  • Boldin MP, Goncharov TM, Goltsev YV, Wallach D (1996) Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1-and TNF receptor-induced cell death. Cell 85:803–815

    Google Scholar 

  • Bonfoco E, Krainc D, Ankarcrona M, Nicotera P, Lipton SA (1995) Apoptosis and necrosis: two distinct events induced respectively by mild and intense insults with NMDA or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci USA 92:72162–72166

    Google Scholar 

  • Botla R, Spivey JR, Aguilar H, Bronk SF, Gores GJ (1995) Ursodeoxycholate (UDCA) inhibits the mitochondrial membrane permeability transition induced by glychenodeoxycholate: a mechansism of UDCA cytoprotection. J Pharmacol Exp Ther 272:930–938

    Google Scholar 

  • Bour ES, Ward LK, Cornman GA, Isom HC (1996) Tumor necrosis factor-alpha-induced apoptosis in hepatocytes in long-term culture. Am J Pathol 148:485–495

    Google Scholar 

  • Bronk SF, Gores GJ (1993) pH-dependent nonlysosomal proteolysis contributes to lethal anoxic injury of rat hepatocytes. Am J Physiol 264:G744–G751

    Google Scholar 

  • Browning JL, Ngam-ek A, Lawton P, DeMarinis J, Tizard R, Chow EP (1993) Lymphotoxin beta, a novel member of the TNF family that forms a heteromeric complex with lymphotoxin on the cell surface. Cell 72:847–856

    Google Scholar 

  • Bursch W, Oberhammer F, Schulte-Hermann R (1992) Cell death by apoptosis and its protective role against disease. Trends Pharmacol Sci 13:245–251

    Google Scholar 

  • Cascales M, Alvarez A, Gasco P, Fernandez Simon L, Sanz N, Bosca L (1994) Cocaine-induced liver injury in mice elicits specific changes in DNA ploidy and induces programmed death of hepatocytes. Hepatology 20:992–1001

    Google Scholar 

  • Child P, Ruiz LA (1968) Acidophilic bodies. Their chemical and physical nature in patients with bolivian hemorrhagic fever. Arch Pathol 85:45–50

    Google Scholar 

  • Chinnaiyan AM, Chaudhary D, O'Rourke K, Koonin EV, Dixit VM (1997a) Role of CED-4 in the activation of CED-3. Nature 388:728–729

    Google Scholar 

  • Chinnaiyan AM, O'Rourke KO, Lane BR, Dixit VM (1997b) Interaction of ced-4 with ced-3 and ced-9: a molecular framework for cell death. Nature 275:1122–1126

    Google Scholar 

  • Columbano A (1995) Cell death: current difficulties in discriminating apoptosis from necrosis in the context of pathological processes in vivo. J Cell Biochem 58:181–190

    Google Scholar 

  • Columbano A, Ledda-Columbano GM, Coni PP, Faa G, Liguori C, Santa Cruz G, Pani P (1985) Occurrence of cell death (apoptosis) during the involvution of liver hyperplasia. Lab Invest 52:670–675

    Google Scholar 

  • Corcoran GB, Ray SD (1992) Contemporary issues in toxicology. The role of the nucleus and other compartments in toxic cell death produced by alkylating hepatotoxicants. Toxicol Appl Pharmacol 113:167–183

    Google Scholar 

  • Corcoran GB, Fix L, Jones DP, Moslen MT, Nicotera P, Oberhammer FA, Buttyan R (1994) Contemporary issues in toxicology. Apoptosis: molecular control point in toxicity. Toxicol Appl Pharmacol 128:169–181

    Google Scholar 

  • Councilman WT (1890) Report on the etiology and prevention of yellow fever. In: Sternberg GM (ed) United states marine hospital service, Treasury Department, document no 1328. Government Printing Office, Washington DC, pp 151–159 (Public health bulletin 2)

    Google Scholar 

  • Crowe PD, VanArsdale TL, Walters BN, Ware CF, Hession C, Ehrenfels B, Browning JL, Din WS, Goodwin RG, Smith CA (1994) A lymphotoxin-beta-specific receptor. Science 264:707–710

    Google Scholar 

  • Czaja MJ, Xu J, Ju Y, Alt E, Schmiedeberg P (1994) Lipopolysaccharide-neutralizing antibody reduces hepatocyte injury from acute hepatotoxin administration. Hepatology 19:1282–1289

    Google Scholar 

  • Czaja MJ, Xu J, Alt E (1995) Prevention of carbon tetrachloride-induced rat liver injury by soluble tumor necrosis factor receptor. Gastroenterology 108:1849–1854

    Google Scholar 

  • Darnay BG, Aggarwal BB (1997) Early events in TNF signaling: a story of associations and dissociations. J Leukoc Biol 61:559–566

    Google Scholar 

  • Decker K, Keppler D (1974) Galactosamine hepatitis: key role of the nucleotide deficiency period in the pathogenesis of cell injury and cell death. Rev Physiol Biochem Pharmacol 71:77–100

    Google Scholar 

  • Ding-feng Z, Hong R, Xiao-ping J, Ya-su Z (1993) Serum tumor necrosis factor (TNF) in the pathogenesis of clinical hepatic failure of HCV and/or HBV infection. Chin Med J 106:335–338

    Google Scholar 

  • Dypbukt JM, Ankarcrona M, Burkitt M, Sjöholm A, Ström K, Orrenius S, Nicotera P (1994) Different prooxidant levels stimulate growth, trigger apoptosis, or produce necrosis of insulin-secreting RINm5F cells. J Biol Chem 269:30533–30560

    Google Scholar 

  • Enari M, Hug H, Nagata S (1995) Involvement of an ICE-like protease in fas-mediated apoptosis. Nature 375:78–81

    Google Scholar 

  • Fabregat I, Sanchez A, Alvarez AM, Nakamura T, Benito M (1996) Epidermal growth factor, but not hepatocyte growth factor, suppresses the apoptosis induced by transforming growth factor-beta in fetal hepatocytes in primary culture. FEBS Lett 384:14–18

    Google Scholar 

  • Fladmark KE, Gjertsen BT, Doskeland SO, Vintermyr OK (1997) Fas/Apo-1-induced apoptosis of primary hepatocytes is inhibited by cAMP. Biochem Biophys Res Commun 232:20–25

    Google Scholar 

  • Flemming W (1885) Über die Bildung von Richtungsfiguren in Säugethiereiern beim Untergang Graaf'scher Follikel. Arch Anat Physiol (Anat Abt) 221–244 + Taf X/XI

    Google Scholar 

  • French LE, Hahne M, Viard I, Radlgruber G, Zanone R, Becker K, Müller C, Tschopp J (1996) Fas and Fas ligand in embryos and adult mice: ligand expression in several immune-privileged tissues and coexpression in adult tissues characterized by apoptotic cell turnover. J Cell Biol 133:335–343

    Google Scholar 

  • Fukuda K, Kojiro M, Chiu J-F (1993) Demonstration of extensive chromatin cleavage in transplanted morris hepatoma 7777 tissue: apotosis or necrosis? Am J Pathol 142:935–946

    Google Scholar 

  • Furukawa K, Estus S, Fu W, Mark RJ, Mattson MP (1997) Neuroprotective action of cycloheximide involves induction of bcl-2 and antioxidant pathways. J Cell Biol 136:1137–1149

    Google Scholar 

  • Galanos C, Freudenberg MA, Reutter W (1979) Galactosamine-induced sensitization to the lethal effects of endotoxin. Proc Natl Acad Sci USA 76:5939–5943

    Google Scholar 

  • Galle PR, Hofmann WJ, Walczak H, Schaller H, Otto G, Stremmel W, Krammer PH, Runkel L (1995) Involvement of the CD95 (APO-1/Fas) receptor and ligand in liver damage. J Exp Med 182:1223–1230

    Google Scholar 

  • Gantner F, Leist M, Jilg S, German PG, Freudenberg MA, Tiegs G (1995a) Tumor necrosis factor-induced hepatic DNA fragmentation as an early marker of T cell-dependent liver injury in mice. Gastroenterology 109:166–176

    Google Scholar 

  • Gantner F, Leist M, Lohse AW, Germann PG, Tiegs G (1995b) Concanavalin A-induced T Cell-mediated hepatic injury in mice: the role of tumor necrosis factor. Hepatology 21:190–198

    Google Scholar 

  • Gantner F, Leist M, Küsters S, Vogt K, Volk D, Tiegs G (1996) T cell stimulus-induced crosstalk between lymphocytes and liver macrophages results in augmented cytokine release. Exp Cell Res 229:137–146

    Google Scholar 

  • Gantner F, Küsters S, Wendel A, Hatzelmann A, Schudt C, Tiegs G (1997) Protection from T cell-mediated murine liver failure by phosphodiesterase inhibitors. J Pharmacol Exp Ther 280:53–60

    Google Scholar 

  • Gilles PN, Guerrette DL, Ulevitch RJ, Schreiber RD, Chisari FV (1992) HBsAg retention sensitizes the hepatocyte to injury by physiological concentrations of interferongamma. Hepatology 16:655–663

    Google Scholar 

  • Glücksmann A (1951) Cell death in normal vertebrate ontogeny. Biol Rev Camb Philos Soc 26:59–86

    Google Scholar 

  • Goldin RD, Hunt NC, Clark J, Wickramasinghe SN (1993) Apoptotic bodies in a murine model of alcoholic liver disease: reversibility of ethanol-induced changes. J Pathol 171:73–76

    Google Scholar 

  • Golstein P (1997) Controlling cell death. Science 275:1081–1082

    Google Scholar 

  • González-Amaro R, Garcia-Monzón C, Garcia-Buey L, Moreno-Otero R, Alonso JL, Yagüe E, Pivel JP, López-Cabrera M, Fernandez-Ruiz E, Sánchez-Madrid F (1994) Induction of tumor necrosis factor alpha by human hepatocytes in chronic viral hepatitis. J Exp Med 179:841–848

    Google Scholar 

  • Gräper L (1914) Eine neue Anschauung über physiologische Zellausschaltung. Arch Zellforsch 12:373–394

    Google Scholar 

  • Grasl Kraupp B, Bursch W, Ruttkay Nedecky B, Wagner A, Lauer B, Schulte Hermann R (1994) Food restriction eliminates preneoplastic cells through apoptosis and antagonizes carcinogenesis in rat liver. Proc Natl Acad Sci USA 91:9995–9999

    Google Scholar 

  • Grell M, Douni E, Wajant H, Löhden M, Clauss M, Maxeiner B, Georgopoulos S, Lesslauer W, Kollias G, Pfizenmaier K, Scheurich P (1995) The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor. Cell 83:793–802

    Google Scholar 

  • Grün M, Liehr H (1976) Significance of endotoxemia in experimental “galactosamine-hepatitis” in rat. Acta Hepato Gastroenterol 23:64–81

    Google Scholar 

  • Guilhot S, Miller T, Cornman G, Isom HC (1996) Apoptosis induced by tumor necrosis factor-alpha in rat hepatocyte cell lines expressing Hepatitis B virus. Am J Pathol 148:801–814

    Google Scholar 

  • Gut J, Schmitt S, Bingen A, Anton M, Kirn A (1984) Probable role of endogenous endotoxins in hepatocytolysis during murine hepatitis caused by frog virus 3. J Infect Dis 149:621–629

    Google Scholar 

  • Gutierrez-Ramos JC, Bluethmann H (1997) Molecules and mechanisms operating in septic shock: lessons from knockout mice. Immunol Today 18:323–333

    Google Scholar 

  • Hansen J, Cherwitz DL, Allen JI (1994) The role of tumor necrosis factor alpha in acute endotoxin-induced hepatotoxicity in ethanol-fed rats. Hepatology 20:461–474

    Google Scholar 

  • Hartley A, Stone JM, Heron C, Cooper JM, Schapira AHV (1994) Complex I Inhibitors induce dose-dependent apoptosis in PC12 cells: relevance to Parkinson's disease. J Neurochem 63:1987–1990

    Google Scholar 

  • Hengartner MO (1997) Apoptosis. CED-4 is a stranger no more. Nature 388:714–715

    Google Scholar 

  • Henkart PA (1996) ICE family proteases: mediators of all apoptotic cell death? Immunity 4:195–201

    Google Scholar 

  • Hewett JA, Jean PA, Kunkel SL, Roth RA (1993) Relationship between tumor necrosis factor-alpha and neutrophils in endotoxin-induced liver injury. Am J Physiol 256:G1011–G1015

    Google Scholar 

  • Higuchi H, Kurose I, Kato S, Miura S, Ishii H (1996) Ethanol-induced apoptosis and oxidative stress in hepatocytes. Alcohol Clin Exp Res 20:340A–346A

    Google Scholar 

  • Higuchi M, Aggarwal BB, Yeh ETH (1997) Activation of CPP32-like protease in tumor necrosis factor-induced apoptosis is dependent on mitochondrial function. J Clin Invest 99:1751–1758

    Google Scholar 

  • Hiramatsu N, Hayashi N, Katayama K, Mochizuki K, Kawanishi Y, Kasahara A, Fusamoto H, Kamada T (1994) Immunohistochemical detection of fas antigen in liver tissue of patients with chronic hepatitis C. Hepatology 19:1354–1359

    Google Scholar 

  • Honchel R, Marsano L, Cohen D, Shedlofsky S, McClain CJ (1991) Lead enhances lipopolysaccharide and tumor necrosis factor liver injury. J Lab Clin Med 117:202–208

    Google Scholar 

  • Huang AS, Wagner RR (1965) Inhibition of cellular RNA synthesis by non-replicating vesicular stomatitis virus. Proc Natl Acad Sci USA 54:1579

    Google Scholar 

  • Hully JR, Chang L, Schwall RH, Widmer HR, Terrell TG, Gillett NA (1994) Induction of apoptosis in the murine liver with recombinant human activin A. Hepatology 20:854–861

    Google Scholar 

  • Inayat-Hussain SH, Couet C, Cohen GM, Cain K (1997) Processing/activation of CPP32-like proteases is involved in transforming growth factor betal-induced apoptosis in rat hepatocytes. Hepatology 25:1516–1526

    Google Scholar 

  • Irmler M, Thome M, Hahne M, Schneider P, Hofmann K, Steiner V, Bodmer J-L, Schröter M, Burns K, Mattmann C, Rimoldi D, French LE, Tschopp J (1997) Inhibition of death receptor signals by cellular FLIP. Nature 388:190–195

    Google Scholar 

  • Ishiyama H, Ogino K, Hobara T (1995) Role of Kupffer cells in rat liver injury induced by diethyldithiocarbamate. Eur J Pharmacol 292:135–141

    Google Scholar 

  • Itoh N, Nagata S (1993) A novel protein domain required for apoptosis. Mutational analysis of human fas antigen. J Biol Chem 268:10932–10937

    Google Scholar 

  • Jakobsen PH, Bate CA, Taverne J, Playfair JH (1997) Malaria: toxins, cytokines and disease. Parasite Immunol 17:223–231

    Google Scholar 

  • Jensen JC, Pogrebniak HW, Pass HI, Buresh C, Merino MJ, Kauffmann D, Venzon D, Langstein HN, Norton JA (1992) Role of tumor necrosis factor in oxygen toxicity. J Appl Physiol 5:1902–1907

    Google Scholar 

  • Jilg S, Barsig J, Leist M, Küsters S, Volk H-D, Wendel A (1996) Enhanced release of interleukin-10 and soluble tumor necrosis factor receptors as novel principles of methylxanthine action in murine models of endotoxic shock. J Pharmacol Exp Ther 278:421–431

    Google Scholar 

  • Jones AL, Selby P (1989) Tumor necrosis factor: clinical relevance. Cancer Surv 8:817–836

    Google Scholar 

  • Jones BA, Rao YP, Stravitz RT, Gores GJ (1997) Bile salt-induced apoptosis of hepatocytes involves activation of protein kinase C. Am J Physiol 272:G1109–G1115

    Google Scholar 

  • Karvountzis GG, Redeker AG, Peters RL (1974) Long-term follow-up studies of patients surviving fulminant viral hepatitis. Gastroenterology 67:870–877

    Google Scholar 

  • Katschinski T, Galanos C, Coumbos A, Freudenberg M (1992) Gamma interferon mediates proponibacterium acnes-induced hypersensitivity to lipopolysaccharide in mice. Infect Immun 60:1994–2001

    Google Scholar 

  • Kehrer JP, Jones DP, Lemasters JJ, Farber JL, Jaeschke H (1990) Contemporary issues in toxicology. Mechanisms of hypoxic cell injury. Toxicol Appl Pharmacol 106:165–178

    Google Scholar 

  • Keppler D, Lesch R, Reutter W, Decker K (1968) Experimental hepatitis induced by D-galactosamine. Exp Mol Pathol 9:279–290

    Google Scholar 

  • Kerr JFR (1969) An electron-microscopic study of liver cell necrosis due to heliotrine. J Pathol 97:557–562

    Google Scholar 

  • Kerr JFR (1971) Shrinkage necrosis: a distinct mode of cellular death. J Pathol 105:13–22

    Google Scholar 

  • Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide ranging implications in tissue kinetics. Br J Cancer 26:239–247

    Google Scholar 

  • Kerr JFR, Searle J, Halliday WJ, Roberts I, Cooksley WGE, Halliday JW, Holder L, Burnett W, Powell LW (1979) The nature of piecemeal necrosis in chronic active hepatitis. Lancet 2:827–828

    Google Scholar 

  • Kim Y-M, de Vera ME, Watkins SC, Billiar TR (1997) Nitric oxide protects cultured rat hepatocytes from tumor necrosis factor-alpha-induced apoptosis by inducing heat shock protein 70 expression. J Biol Chem 272:1402–1411

    Google Scholar 

  • Klion FM, Schaffner F (1966) The ultrastructure of acidophilic bodies. Am J Pathol 48:755–765

    Google Scholar 

  • Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD (1997) The release of cytochrome c from mitochondria: a primary site for bcl-2 regulation of apoptosis. Science 275:1132–1136

    Google Scholar 

  • Kondo T, Suda T, Fukuyama H, Adachi M, Nagata S (1997) Essential roles of the fas ligand in the development of hepatitis. Nat Med 3:409–413

    Google Scholar 

  • Koop DR, Klopfenstein B, Iimuro Y, Thurman RG (1997) Gadolinium chloride blocks alcohol-dependent liver toxicity in rats treated chronically with intragastric alcohol despite the induction of CYP2E1. Mol Pharmacol 51:944–950

    Google Scholar 

  • Krams SM, Egawa H, Quinn MB, Villanueva JC, Garcia-Kennedy R, Martinez OM (1995) Apoptosis as a mechanism of cell death in liver allograft rejection. Transplantation 59:621–625

    Google Scholar 

  • Krippner A, Matsuno-Yagi A, Gottlieb RA, Babior BM (1996) Loss of function of cytochrome c in Jurkat cells undergoing Fas-mediated apoptosis. J Biol Chem 271:21629–21636

    Google Scholar 

  • Kroemer G (1997a) Mitochondrial implication in apoptosis. Towards an endosymbiont hypothesis of apoptosis evolution. Cell Death Differ 4:443–456

    Google Scholar 

  • Kroemer G (1997b) The proto-oncogene bcl-2 and its role in regulating apoptosis. Nat Med 3:614–620

    Google Scholar 

  • Kroemer G, Zamzami N, Susin SA (1997) Mitochondrial control of apoptosis. Immunol Today 18:44–51

    Google Scholar 

  • Kumar S, Lavin MF (1996) The ICE family of cysteine proteases as effectors of cell death. Cell Death Differ 3:255–267

    Google Scholar 

  • Künstle G, Leist M, Uhlig S, Revesz L, Feifel R, MacKenzie A, Wendel A (1997) ICE-protease inhibitors block murine liver injury and apoptosis caused by CD95 or TNF-alpha. Immunol Lett 55:5–10

    Google Scholar 

  • Küsters S, Gantner F, Kunstle G, Tiegs G (1996) Interferon gamma plays a critical role in T cell-dependent liver injury in mice initiated by concanavalin A. Gastroenterology 111:462–471

    Google Scholar 

  • Küsters S, Tiegs G, Alexopoulou L, Pasparakis M, Douni E, Kuenstle G, Bluethmann H, Wendel A, Pfizenmaier K, Kollias G, Grell M (1997) In vivo evidence for a functional role of both tumor necrosis factor (TNF) receptors and transmembrane TNF in experimental hepatitis. Eur J Immunol 27:(2870–2875)

    Google Scholar 

  • Kwo P, Patel T, Bronk SF, Gores GJ (1995) Nuclear serine protease activity contributes to bile acid-induced apoptosis in hepatocytes. Am J Physiol 268:G613–G621

    Google Scholar 

  • Lacronique V, Mignin A, Fabre M, Viollet B, Rouquet N, Molina T, Porteu A, Henrion A, Bouscary D, Varlet P, Joulin V, Kahn A (1996) Bcl-2 protects from lethal hepatic apoptosis induced by an anti-Fas antibody in mice. Nature Med 2:80–86

    Google Scholar 

  • Lancaster JR, Laster SM, Gooding LR (1989) Inhibition of target cell mitochondrial electron transfer by tumor necrosis factor. FEBS Lett 248:169–174

    Google Scholar 

  • Laskin DL, Pendino KJ (1995) Macrophages and inflammatory mediators in tissue injury. Annu Rev Pharmacol Toxicol 35:655–677

    Google Scholar 

  • Laskin DL, Gardner CR, Price VF, Jollow DJ (1995) Modulation of macrophage functioning abrogates the acute hepatotoxicity of acetaminophen. Hepatology 21:1045–1050

    Google Scholar 

  • Leach BE, Forbes JC (1941) Sulfonamide drugs as protective agents against carbon tetrachloride poisoning. Proc Soc Exp Biol Med 48:361–363

    Google Scholar 

  • Ledda-Columbano GM, Coni P, Curto M, Giacomini L, Faa G, Olivero S, Piacentini M, Columbano A (1991) Induction of two different modes of cell death, apoptosis and necrosis, in rat liver after a single dose of thioacetamide. Am J Pathol 139:1099–1109

    Google Scholar 

  • Ledda-Columbano GM, Coni P, Faa G, Manenti G, Columbano A (1992) Rapid induction of apoptosis in rat liver by cycloheximide. Am J Pathol 140:545–549

    Google Scholar 

  • Ledda-Columbano GM, Shinozuka H, Katyal SL, Columbano A, (1996) Cell proliferation, cell death and hepatocarcinogenesis. Cell Death Differ 3:17–22

    Google Scholar 

  • Lehmann V, Freudenberg MA, Galanos C (1987) Lethal toxicity of lipopolysaccharide and tumor necrosis factor in normal and D-galactosamine-treated mice. J Exp Med 165:657–663

    Google Scholar 

  • Leist M, Nicotera P (1997) The shape of cell death. Biochem Biophys Res Commun 236:1–9

    Google Scholar 

  • Leist M, Wendel A (1995) Tunicamycin potently inhibits tumor necrosis factor-induced hepatocyte apoptosis. Eur J Pharmacol 292:201–204

    Google Scholar 

  • Leist M, Wendel A (1996) A novel mechanism of murine hepatocyte death inducible by concanavalin A. J Hepatol 24:948–959

    Google Scholar 

  • Leist M, Gantner F, Bohlinger I, German PG, Tiegs G, Wendel A (1994) Murine hepatocyte apoptosis induced in vitro and in vivo by TNF-alpha requires transcriptional arrest. J Immunol 153:1778–1787

    Google Scholar 

  • Leist M, Gantner F, Bohlinger I, Tiegs G, Germann PG, Wendel A (1995a) Tumor necrosis factor-induced hepatocyte apoptosis precedes liver failure in experimental murine shock models. Am J Pathol 146:1220–1234

    Google Scholar 

  • Leist M, Gantner F, Jilg S, Wendel A (1995b) Activation of the 55 kDa TNF-receptor is necessary and sufficient for TNF-induced liver failure, hepatocyte apoptosis and nitrite release. J Immunol 154:1307–1316

    Google Scholar 

  • Leist M, Gantner F, Künstle G, Bohlinger I, Tiegs G, Bluethmann H, Wendel A (1996a) The 55 kD tumor necrosis factor receptor and CD95 independently signal murine hepatocyte apoptosis and subsequent liver failure. Mol Med 2:109–124

    Google Scholar 

  • Leist M, Auer-Barth S, Wendel A (1996b) Tumor necrosis factor production in the perfused mouse liver and its pharmacological modulation by methylxanthines. J Pharmacol Exp Ther 276:968–976

    Google Scholar 

  • Leist M, Gantner F, Naumann H, Bluethmann H, Vogt K, Brigelius-Flohe R, Nicotera P, Volk H, Wendel A (1997a) Tumor necrosis factor-induced apoptosis during poisoning of mice with hepatotoxins. Gastroenterology 112:924–935

    Google Scholar 

  • Leist M, Single B, Castoldi AF, Kühnle S, Nicotera P (1997b) Intracellular ATP concentration: a switch deciding between apoptosis and necrosis. J Exp Med 185:1481–1486

    Google Scholar 

  • Leist M, Single B, Künstle G, Volbracht C, Hentze H, Nicotera P (1997c) Apoptosis in the absence of poly-(ADP-ribose) polymerase. Biochem Biophys Res Commun 233:518–522

    Google Scholar 

  • Lennon SV, Martin SJ, Cotter TG (1991) Dose-dependent induction of apoptosis in human tumor cell lines by widely diverging stimuli. Cell Prolife 24:203–214

    Google Scholar 

  • Levy E, Slusser RJ, Ruebner BH (1968) Hepatic changes produced by a single dose of endotoxin in the mouse. Am J Pathol 52:477–502

    Google Scholar 

  • Lewis M, Tartaglia LA, Lee A, Bennett GL, Rice GC, Wong GH, Chen E, Goeddel DV (1991) Cloning and expression of cDNAs for two distinct murine tumor necrosis factor receptors demonstrate one receptor is species specific. Proc Natl Acad Sci USA 88:2830–2834

    Google Scholar 

  • Libert C, Van Bladel S, Brouckaert P, Shaw A, Fiers W (1991) Involvement of the liver, but not of IL-6, in IL-1-induced desensitization to the lethal effects of tumor necrosis factor. J Immunol 146:2625–2632

    Google Scholar 

  • Libert C, Brouckaert P, Fiers W (1994) Protection by alpha-1 acid-glycoprotein against tumor necrosis factor-induced lethality. J Exp Med 180:1571–1575

    Google Scholar 

  • Liehr H, Grün M, Seelig H, R, Seelig, Reutter W, Heine W (1978) On the pathogenesis of galactosamine hepatitis. Virchows Arch [B] 26:331–344

    Google Scholar 

  • Lin J-K, Chou C-K (1992) In vitro apoptosis in the human hepatoma cell line induced by transforming growth factor beta-1. Cancer Res 52:385–388

    Google Scholar 

  • Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86:147–157

    Google Scholar 

  • Liu X, Zou H, Slaughter C, Wang X (1997) DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89:175–184

    Google Scholar 

  • Liu ZG, Hsu H, Goeddel DV, Karin M (1996) Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kB activation prevents cell death. Cell 87:565–576

    Google Scholar 

  • Lockshin RA, Beaulaton J (1974) Programmed cell death. Life Sci 15:1549–1565

    Google Scholar 

  • Lockshin RA, Williams CM (1965) Programmed cell death I. Cytology of degeneration in the intersegmental muscles of the pernyi silkmoth. J Insect Physiol 11:123–133

    Google Scholar 

  • Los M, van de Craen M, Penning LC, Schenk H, Westendorp M, Baeuerle PA, Dröge W, Krammer PH, Flers W, Schulze-Osthoff K (1995) Requirement of an ICE/CED-3 protease for Fas/APO-1-mediated apoptosis. Nature 375:81–83

    Google Scholar 

  • Majno G, Joris I (1995) Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 146:3–15

    Google Scholar 

  • Martin-Sanz P, Diaz-Guerra MJ, Casado M, Bosca L (1996) Bacterial lipopolysaccharide antagonizes transforming growth factor beta 1-induced apoptosis in primary cultures of hepatocytes. Hepatology 23:1200–1207

    Google Scholar 

  • Medline A, Schaffner F, Popper H (1970) Ultrastructural features in galactosamine-induced hepatitis. Exp Mol Pathol 12:201–212

    Google Scholar 

  • Merrill JE, Zimmerman RP (1991) Natural and induced cytotoxicity of oligodendrocytes by microglia is inhibitable by TGFbeta. GLIA 4:327–331

    Google Scholar 

  • Miethke T, Wahl C, Heeg K, Echtenacher B, Krammer PH, Wagner H (1992) T cell-mediated lethal shock triggered in mice by the superantigen staphylococcal enterotoxin B: critical role of tumor necrosis factor. J Exp Med 175:91–98

    Google Scholar 

  • Miethke T, Duschek K, Heeg K, Wagner H (1993) Pathogenesis of the toxic shock syndrome: T cell mediated lethal shock caused by the superantigen TSST-1. Eur J Immunol 23:1494–1500

    Google Scholar 

  • Mihas AA, Ceballos R, Mihas TA, Hirshowitz BI (1990) Modification of the hepatotoxicity of D-galactosamine in the rat by an anti-endotoxin. J Med 21:301–311

    Google Scholar 

  • Miyai K, Slusser RJ, Ruebner BH (1962) Viral hepatitis in mice: an electron microscopic study. Exp Mol Pathol 2:464–480

    Google Scholar 

  • Mohler KM, Sleath PR, Fitzner JN, Cerretti DP, Alderson M, Kerwar SS, Torrance DS, Otten-Evans C, Weerawarna T, Greenstreet K, Kronheim SR, Petersen M, Gerhart M, Kozlosky CJ, March CJ, Black RA (1994) Protection against a lethal dose of endotoxin by an inhibitor of tumor necrosis factor processing. Nature 370:218–220

    Google Scholar 

  • Moldawer LL, Gelin J, Schersten T, Lundholm KG (1987) Circulating interleukin1 and tumor necrosis factor during inflammation. Am J Physiol 253:R922–R928

    Google Scholar 

  • Moppert J, Ekesparre D, Bianchi L (1967) Zur Morphogenese der eosinophilen Einzelzellnekrose im Leberparenchym des Menschen. Eine licht-und elektronenoptisch korrelierte Untersuchung. Virchows Arch Pathol Anat 342:210–220

    Google Scholar 

  • Mori W, Aoki N, Shiga J (1981) Acute hepatic cell necrosis experimentally produced by viral agents in rabbits. Am J Pathol 103:31–38

    Google Scholar 

  • Morita M, Watanabe Y, Akaike T (1995) Protective effect of hepatocyte growth factor on interferon-gamma-induced cytotoxicity in mouse hepatocytes. Hepatology 21:1585–1593

    Google Scholar 

  • Muzio M, Chinnaiyan AM, Kischkel FC, O'Rourke K, Shevchenko A, Ni J, Scaffidi C, Bretz JD, Zhang M, Gentz R, Mann M, Krammer PH, Peter ME, Dixit VM (1996) FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 85:817–827

    Google Scholar 

  • Nagata S (1997) Apoptosis by death factor. Cell 99:355–365

    Google Scholar 

  • Nagata S, Golstein P (1995) The Fas death factor. Science 267:1449–1455

    Google Scholar 

  • Nakano Y, Shirai M, Mori N, Nakano M (1991) Neutralization of microcystin shock in mice by tumor necrosis factor alpha antiserum. Appl Environ Microbiol 57:327–330

    Google Scholar 

  • Ni R, Tomita Y, Matsuda K, Ichihara A, Ishimura K, Ogasawara J, Nagata S (1994) Fas-mediated apoptosis in primary cultured mouse hepatocytes. Exp Cell Res 215:332–337

    Google Scholar 

  • Nicotera P, Leist M (1997) Energy supply and the shape of death in neurons and lymphoid cells. Cell Death Differ 4:435–442

    Google Scholar 

  • Nicotera P, Hartzell P, Baldi C, Svensson S-A, Bellomo G, Orrenius S (1986a) Cystamine induces toxicity in hepatocytes through the elevation of cytosolic Ca2+ and the stimulation of a nonlysosomal proteolytic system. J Biol Chem 261:14628–14635

    Google Scholar 

  • Nicotera P, Hartzell P, Davis G, Orrenius S (1986b) The formation of plasma membrane blebs in hepatocytes exposed to agents that increase cytosolic Ca-2+ is mediated by the activation of a non-lysosomal proteolytic system. FEBS Lett 209:139–144

    Google Scholar 

  • Nieminen A-L, Saylor AK, Tesfai SA, Herman B, Lemasters JJ (1995) Contribution of the mitochondrial permeability transition to lethal injury after exposure of hepatocytes to t-butylhydroperoxide. Biochem J 307:99–106

    Google Scholar 

  • Nissen F (1886) Über das Verhalten der Kerne in den Milchdrüsenzellen bei der Absonderung. Arch Mikroskop Anat 26:337–342

    Google Scholar 

  • Nolan JP (1989) Intestinal endotoxins as mediators of hepatic injury-an idea whose time has come again. Hepatology 10:887–891

    Google Scholar 

  • Oberhammer F, Bursch W, Parzefall W, Breit P, Erber E, Stadler M, Schulte-Hermann R (1991) Effects of transforming growth factor beta on cell death of cultured rat hepatocytes. Cancer Res 51:2478–2485

    Google Scholar 

  • Oberhammer FA, Pavelka M, Sharma S, Tiefenbacher R, Purchio AF, Bursch W, Schulte-Hermann R (1992) Induction of apoptosis in cultured hepatocytes and in regressing liver by transforming growth factor β1. Proc Natl Acad Sci USA 89:5408–5412

    Google Scholar 

  • Oberhammer F, Bursch W, Tiefenbacher R, Fröschl G, Pavelka M, Purchio T, Schulte-Hermann R (1993a) Apoptosis is induced by transforming growth factor-beta1 within 5 hours in regressing liver without significant fragmentation of the DNA. Hepatology 18:1238–1246

    Google Scholar 

  • Oberhammer F, Wilson JW, Dive C, Morris ID, Hickman JA, Wakeling AE, Walker PR, Sikorska M (1993b) Apoptotic death in epithelial cells: cleavage of DNA to 300 and/or 50 kb fragments prior to or in the absence of internucleosomal fragmentation. EMBO J 12:3679–3684

    Google Scholar 

  • Oberhammer F, Nagy P, Tiefenbacher R, Fröschl G, Bouzanza B, Thorgeirsson SS, Carr B (1996) The antiandrogen cyproterone acetate induces synthesis of transforming factor beta-1 in the parenchymal cells of the liver accompanied by an enhanced sensitivity to undergo apoptosis and necrosis without inflammation. Hepatology 23:329–337

    Google Scholar 

  • Oberhammer FA, Qin H (1995) Effect of three tumor promoters on the stability of hepatocyte cultures and apoptosis after transforming growth factor-beta1. Carcinogenesis 16:1363–1371

    Google Scholar 

  • Oehm A, Behrmann I, Kalk W, Pawlita M, Maier G, Klas C, Li-Weber M, Richards S, Dhein J, Trauth BC, Ponsting H, Krammer PH (1992) Purification and molecular cloning of the APO-1 cell surface antigen, a member of the tumour necrosis factor/nerve growth factor receptor family. J Biol Chem 267:10709–10715

    Google Scholar 

  • Ogasawara J, Watanabe-Fukunaga R, Adachi M, Matsuzawa A, Kasugai T, Kitamura Y, Itoh N, Suda T, Nagata S (1993) Lethal effect of the anti-fas antibody in mice. Nature 364:806–809

    Google Scholar 

  • Ohno K, Maier P (1995) Tumor necrosis factor alpha differentially modulates the cellular response of rat hepatocytes in periportal-and pericentral-equivalent cultures. Eur J Pharmacol 292:205–214

    Google Scholar 

  • Ohno K, Nakano T, Matsumoto Y, Watari T, Goitsuka R, Nakayama H, Tsujimoto H, Hasegawa A (1993) Apoptosis induced by tumor necrosis factor in cells chronically infected with feline immunodeficiency virus. J Virol 67:2429–2433

    Google Scholar 

  • Orrenius S, McConkey DJ, Bellomo G, Nicotera P (1989) Role of Ca-2+ in toxic cell killing. Trends Pharmacol Sci 10:281–285

    Google Scholar 

  • Otto F, Schmid P, Mackensen A, Wehr U, Seiz A, Braun M, Galanos C, Mertelsmann R, Engelhard R (1996) Phase II trial of intravenous endotoxin in patients with colorectal and non-small cell lung cancer. Eur J Cancer 32 A:1712–1718

    Google Scholar 

  • Pastorino JG, Snyder JW, Serroni A, Hoek JB, Farber JL (1993) Cyclosporin and carnitine prevent the anoxic death of cultured hepatocytes by inhibiting the mitochondrial permeability transition. J Biol Chem 268:13791–13798

    Google Scholar 

  • Pastorino JG, Simbula G, Yamamoto K, Glascott Jr PA, Rothman RJ, Farber JL (1996) The cytotoxicity of tumor necrosis factor depends on induction of the mitochondrial permeability transition. J Biol Chem 271:29792–29798

    Google Scholar 

  • Patel T, Bronk SF, Gores GJ (1994) Increases of intracellular magnesium promote glycodeoxycholate-induced apoptosis in rat hepatocytes. J Clin Invest 94:2183–2192

    Google Scholar 

  • Patel T, Gores GJ, Kaufmann SH (1996) The role of proteases during apoptosis. FASEB J 10:587–597

    Google Scholar 

  • Pensati L, Costanzo A, Ianni A, Accapezzato D, Iorio R, Natoli G, Nisini R, Almerighi C, Balsano C, Vajro P, Vegnente A, Levrero M (1997) Fas/Apo1 mutations and autoimmune lymphoproliferative syndrome in a patient with type 2 autoimmune hepatitis. Gastroenterology 113:1384–1389

    Google Scholar 

  • Peter ME, Kischkel FC, Hellbardt S, Chinnaiyan AM, Krammer PH, Dixit VM (1996) CD95(APO-1/Fas)-associating signalling proteins. Cell Death Differ 3:161–170

    Google Scholar 

  • Pfitzner W (1886) Zur pathologischen Anatomie des Zellkerns. Virchows Arch Pathol Anat 103:275–300

    Google Scholar 

  • Prehn JHM, Bindokas VP, Marcuccilli CJ, Krajewski S, Reed JC, Miller RJ (1994) Regulation of neuronal Bcl-2 protein expression and calcium homeostasis by transforming growth factor type beta confers wide-ranging protection on rat hippocampal neurons. Proc Natl Acad Sci USA 91:12599–12603

    Google Scholar 

  • Pritchard DJ, Butler WH (1989) Apoptosis — the mechanism of cell death in dimethylnitrosamine-induced hepatotoxicity. J Pathol 158:253–260

    Google Scholar 

  • Que FG, Gores GJ (1996) Cell death by apoptosis: basic concepts and disease relevance for the gastroenterologist. Gastroenterology 110:1238–1243

    Google Scholar 

  • Randow F, Syrbe U, Meisel C, Krausch D, Zuckermann H, Platzer C, Volk H-D (1995) Mechanism of endotoxin desensitization: involvement of interleukin 10 and transforming growth factor beta. J Exp Med 181:1887–1892

    Google Scholar 

  • Ratan RR, Murphy TH, Baraban JM (1994) Macromolecular synthesis inhibitors prevent oxidative stress-induced apoptosis in embryonic cortical neurons by shunting cysteine from protein synthesis to glutathione. J Neurosci 14:4385–4392

    Google Scholar 

  • Ray SD, Sorge CL, Kamendulis LM, Corcoran GB (1992) Ca++-activated DNA fragmentation and dimethylnitrosamine-induced hepatic necrosis: effects of Ca++-endonuclease and poly(ADP-ribose) polymerase inhibitors in mice. J Pharmacol Exp Ther 263:387–394

    Google Scholar 

  • Ray SD, Kamendulis LM, Gurule MW, Yorkin RD, Corcoran GB (1993) Ca2+ antagonists inhibit DNA fragmentation and toxic cell death induced by acetaminophen. FASEB J 7:453–463

    Google Scholar 

  • Ray SD, Mumaw VR, Raje RR, Fariss MW (1996) Protection of acetaminophen-induced hepatocellular apoptosis and necrosis by cholesteryl hemisuccinate pretreatment. J Pharmacol Exp Ther 279:1470–1483

    Google Scholar 

  • Redondo C, Flores I, Gonzalez A, Nagata S, Carrera AC, Merida I, Martinez AC (1996) Linomide prevents the lethal effect of anti-Fas antibody and reduces Fas-mediated ceramide production in mouse hepatocytes. J Clin Invest 98:1245–1252

    Google Scholar 

  • Rensing-Ehl A, Frei K, Flury R, Matiba B, Mariani SM, Weller M, Aebischer P, Krammer PH, Fontana A (1995) Local Fas/APO-1 (CD95) ligand-mediated tumor cell killing in vivo. Eur J Immunol 25:2253–2258

    Google Scholar 

  • Reutter W, Lesch R, Keppler D, Decker K (1968) Galactosamine-hepatitis. Naturwissenschaften 55:497

    Google Scholar 

  • Reutter W, Bauer CH, Lesch R (1970) On the mechanism of action of galactosamine: different response to D-galactosamine of rat liver during development. Naturwissenschaften 57:674–675

    Google Scholar 

  • Rodriguez I, Matsuura K, Khatib K, Reed JC, Nagata S, Vassalli P (1996a) A bcl-2 transgene expressed in hepatocytes protects mice from fulminant liver destruction but not from rapid death induced by anti-Fas antibody injection. J Exp Med 183:1031–1036

    Google Scholar 

  • Rodriguez I, Matsuura K, Ody C, Nagata S, Vassalli P (1996b) Systemic injection of a tripeptide inhibits the intracellular activation of CPP32-like proteases in vivo and fully protects mice against fas-mediated fulminant liver destruction and death. J Exp Med 184:2067–2072

    Google Scholar 

  • Rosser BG, Gores GJ (1995) Liver cell necrosis: cellular mechanisms and clinical implications. Gastroenterology 108:252–275

    Google Scholar 

  • Rouquet N, Allemand I, Grimber G, Molina T, Briand P, Joulin V (1996a) Protection of hepatocytes from Fas-mediated apoptosis by a non-transforming SV40 T-antigen mutant. Cell Death Differ 3:91–96

    Google Scholar 

  • Rouquet N, Pagès J-C, Molina T, Briand P, Joulin V (1996b) ICE inhibitor YVADcmk is a potent therapeutic agent against in vivo liver apoptosis. Curr Biol 6:1192–1195

    Google Scholar 

  • Rubin BY (1992) TNF and viruses: multiple interrelationships. In: Aggarwal BB, Vilcek J (eds) Tumor necrosis factors. Structure, function and mechanisms of action. Dekker, New York, pp 331–340

    Google Scholar 

  • Saavedra JE, Billiar TR, Williams DL, Kim YM, Watkins SC, Keefer LK (1997) Targeting nitric oxide (NO) delivery in vivo. Design of a liver-selective NO donor prodrug that blocks tumor necrosis factor-alpha-induced apoptosis and toxicity in the liver. J Med Chem 40:1947–1954

    Google Scholar 

  • Sanderson M, Factor V, Nagy P, Kopp J, Kondaiah P, Wakefield L, Roberts AB, Sporn MB, Thorgeirsson SS (1995) Hepatic expression of mature transforming growth factor betal in transgenic mice results in multiple tissue lesions. Proc Natl Acad Sci USA 92:2572–2576

    Google Scholar 

  • Sasaki H, Matsuno T, Tanaka N, Orita K (1996) Activation of apoptosis during the reperfusion phase after rat liver ischemia. Transplant Proc 28:1908–1909

    Google Scholar 

  • Sauer A, Hartung T, Aigner J, Wendel A (1996) Endotoxin-inducible granulocyte-mediated hepatotoxicity requires adhesion and serine protease release. J Leukoc Biol 60:633–643

    Google Scholar 

  • Saunders JW (1966) Death in embryonic systems. Science 154:604–612

    Google Scholar 

  • Savill J, Fadok V, Henson P, Haslett C (1993) Phagocyte recognition of cells undergoing apoptosis. Immunol Today 14:131–136

    Google Scholar 

  • Schulte-Hermann R, Bursch W, Grasl-Kraupp B (1995) Active cell death (apoptosis) in liver biology and disease. Prog Liver Dis 15:1–35

    Google Scholar 

  • Schwartz LM, Osborne BA (1993) Programmed cell death, apoptosis and killer genes. Immunol Today 14:582–590

    Google Scholar 

  • Schwartz LM, Smith SW, Jones MEE, Osborne BA (1993) Do all programmed cell deaths occur via apoptosis? Proc Natl Acad Sci USA 90:980–984

    Google Scholar 

  • Searle J, Kerr JFR, Bishop CJ (1982) Necrosis and apoptosis: distinct modes of cell death with fundamentally different significance. Pathol Ann 17:229–259

    Google Scholar 

  • Searle J, Harmon BV, Bishop CJ, Kerr JFR (1987) The significance of cell death by apoptosis in hepatobiliary disease. J Gastroenterol Hepatol 2:77–96

    Google Scholar 

  • Searle JW, Balderson G (1996) Apoptosis as a mechanism of cell death in liver allograft rejection. Transplantation 61:168–169

    Google Scholar 

  • Seyle H, Tuchweber B, Bertok L (1966) Effect of lead acetate on the susceptibility of rats to bacterial endotoxins. J Bacteriol 91:884–890

    Google Scholar 

  • Seyberth HW, Schmidt-Gayk H, Hackental E (1972) Toxicity, clearance and distribution of endotoxin in mice as influenced by actinomycin D, cycloheximide, a-amanitin and lead acetate. Toxicon 10:491–500

    Google Scholar 

  • Shi J, Fujeda H, Kokubo Y, Wake K (1997) Evidence of hepatocyte apoptosis in the rat liver after the administration of carbon tetrachloride (in press)

    Google Scholar 

  • Shikata N, Oyaizu T, Senzaki H, Uemura Y, Tsubura A (1996) Liver apoptosis after dimethylnitrosamine administration in shrews. Exp Toxicol Pathol 48:307–311

    Google Scholar 

  • Shimizu S, Eguchi Y, Kamiike W, Akao Y, Kosaka H, Hasegawa J, Matsuda H, Tsujimoto Y (1996) Involvement of ICE family proteases in apoptosis induced by reoxygenation of hypoxic hepatocytes. Am J Physiol 271:G949–G958

    Google Scholar 

  • Shimizu S, Eguchi Y, Kamiike W, Itoh Y, Hasegawa J-I, Yamabe K, Otsuki Y, Matsuda H, Tsujimoto Y (1996) Induction of apoptosis as well as necrosis by hypoxia and predominant prevention of apoptosis by Bc1-2 and Bcl-xL. Cancer Res 56:2161–2166

    Google Scholar 

  • Shinagawa T, Yoshioka K, Kakumu S, Wakita T, Ishikawa T, Itoh Y, Takayanaki M (1991) Apoptosis in cultured rat hepatocytes: the effect of tumour necrosis factor alpha and interferon gamma. J Pathol 165:247–253

    Google Scholar 

  • Solorzano CC, Ksontini R, Pruitt JH, Hess PJ, Edwards PD, Kaibara A, Abouhamze A, Auffenberg T, Galardy RE, Vauthey JN, Copeland EM III, Edwards CK III, Lauwers GY, CLare-Salzler M, MacKay SL, Moldawer LL, Lazarus DD (1997) Involvement of 26-kDa cell-associated TNF-alpha in experimental hepatitis and exacerbation of liver injury with a matrix metalloproteinase inhibitor. J Immunol 158:414–419

    Google Scholar 

  • Sparwasser T, Miethke T, Lipford G, Erdmann A, Hacker H, Heeg K, Wagner H (1997) Macrophages sense pathogens via DNA motifs: induction of tumor necrosis factoralpha-mediated shock. Eur J Immunol 27:1671–1679

    Google Scholar 

  • Stadler J, Bentz BG, Harbrecht BG, Di Silvio M, Curran RD, Billiar T, Hoffman RA, Simmons RL (1992) Tumor necrosis factor alpha inhibits hepatocyte mitochondrial respiration. Ann Surg 216:539–546

    Google Scholar 

  • Stanger BZ (1996) Looking beneath the surface: the cell death pathway of Fas/APO-1 (CD95). Mol Med 2:7–20

    Google Scholar 

  • Stauber GB, Aggarwal BB (1989) Characterization and affinity cross-linking of receptors for human recombinant lymphotoxin (tumor necrosis factor-beta) on a human histiocytic lymphoma cell line, U-937. J Biol Chem 264:3573–3576

    Google Scholar 

  • Strand S, Hofmann WJ, Hug H, Müller. M., Otto G, Strand D, Mariani SM, Stremmel W, Krammer PH, Galle PR (1996) Lymphocyte apoptosis induced by CD95 (APO-1/Fas) ligand expressing tumor cells — a mechanism of immune evasion? Nature Med 2:1361–1366

    Google Scholar 

  • Su F, Schneider RJ (1997) Hepatitis B virus HBx protein sensitizes cells to apoptotic killing by tumor necrosis factor alpha. Proc Natl Acad Sci USA 94:8744–8749

    Google Scholar 

  • Sun DY, Jiang S, Zheng L, Ojcius DM, Young JD (1994) Separate metabolic pathways leading to DNA fragmentation and apoptotic chromatin condensation. J Exp Med 179:559–568

    Google Scholar 

  • Susin SA, Zamzami N, Castedo M, Hirsch T, Marchetti P, Macho A, Daugas E, Geuskens M, Kroemer G (1996) Bc1-2 inhibits the mitochondrial release of an apoptogenic protease. J Exp Med 184:1331–1341

    Google Scholar 

  • Susin SA, Zamzami N, Castedo M, Daugas E, Wang H-G, Geley S, Fassy F, Reed JC, Kromer G (1997) The central executioner of apoptosis: multiple connections between protease activation and mitochondria in Fas/APO-1/CD95-and ceramide-induced apoptosis. J Exp Med 186:25–37

    Google Scholar 

  • Svoboda D, Nielson A, Werder A, Higginson J (1962) An electron microscopic study of viral hepatitis in mice. Am J Pathol 41:205–224

    Google Scholar 

  • Tagawa Y, Sekikawa K, Iwakura Y (1997) Suppression of concanavalin A-induced hepatitis in IFN-gamma (-/-) mice, but not in TNF-alpha (-/-) mice: role for IFN-gamma in activating apoptosis of hepatocytes. J Immunol 159:1418–1428

    Google Scholar 

  • Talmadge JE, Bowersox O, Tribble H, Lee SH, Shepard M, Liggitt D (1987) Toxicity of tumor necrosis factor is synergistic with gamma-interferon and can be reduced with cyclooxygenase inhibitors. Am J Pathol 128:410–425

    Google Scholar 

  • Tanaka M, Suda T, Yatomi T, Nakamura N, Nagata S (1997) Lethal effect of recombinant human fas ligand in mice pretreated with Propionibacterium acnes. J Immunol 158:2303–2309

    Google Scholar 

  • Tartaglia LA, Ayres M, Wong GHW, Goeddel DV (1993) A novel domain within the 55 kd TNF receptor signals cell death. Cell 74:845–853

    Google Scholar 

  • Tartaglia LA, Goeddel DV (1992) Two TNF receptors. Immunol Today 13:151–153

    Google Scholar 

  • Taverne J, Bate CA, Sarkar DA, Meager A, Rook GA, Playfair JH (1990) Human and murine macrophages produce TNF in response to soluble antigens of plasmodium falciparum. Parasite Immunol 12:33–43

    Google Scholar 

  • Tewari M, Dixit VM (1995) Fas-and tumor necrosis factor-induced apoptosis is inhibited by the poxvirus crmA gene product. J Biol Chem 270:3255–3260

    Google Scholar 

  • Thome M, Schneider P, Hofmann K, Fickenscher H, Meinl E, Neipel F, Mattmann C, Burns K, Bodmer J-L, Schröter M, Scaffidi C, Krammer PH, Peter ME, Tschopp J (1997) Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature 386:517–520

    Google Scholar 

  • Tiegs G, Wolter M, Wendel A (1989) Tumor necrosis factor is a terminal mediator in galactosamine/endotoxin-induced hepatitis in mice. Biochem Pharmacol 38:627–631

    Google Scholar 

  • Tiegs G, Niehörster M, Wendel A (1990) Leukocyte alterations do not account for hepatitis induced by endotoxin or TNF-alpha in galactosamine-sensitized mice. Biochem Pharmacol 40:1317–1322

    Google Scholar 

  • Torre D, Zeroli C, Giola M, Ferrario G, Fiori GP, Bonetta G, Tambini R (1994) Serum levels of interleukin-1 alpha, interleukin-1 beta, interleukin-6, and tumor necrosis factor in patients with acute viral hepatitis. Clin Infect Dis 18:194

    Google Scholar 

  • Tsuji H, Harada A, Mukaida N, Nakanuma Y, Bluethmann H, Kaneko S, Yamakawa K, Nakamura S-I, Kobayashi K-I, Matsushima K (1997) Tumor necrosis factor receptor p55 is essential for intrahepatic granuloma formation and hepatocellular apoptosis in a murine model of bacterium-induced fulminant hepatitis. Infect Immun 65:1892–1898

    Google Scholar 

  • Tsukidate K, Yamamoto K, Snyder JW, Farber JL (1993) Microtubule antagonists activate programmed cell death (apoptosis) in cultured rat hepatocytes. Am J Pathol 143:918–925

    Google Scholar 

  • Valeri F, Boess F, Wolf A, Göldlin C, Boelsteri UA (1997) Fructose and tagatose protect against oxidative cell injury by iron chelation. Free Radic Biol Med 22:257–268

    Google Scholar 

  • Van Molle W, Libert C, Fiers W, Brouckaert P (1997) Alpha 1-acid glycoprotein and alpha 1-antitrypsin inhibit TNF-induced but not anti-Fas-induced apoptosis of hepatocytes in mice. J Immunol 159:3555–3564

    Google Scholar 

  • Virchow R (1858) Cellular pathology as based upon physiological and pathological histology. In: Birmingham AL (ed) Classics of medicine library, 2nd edn, p 361

    Google Scholar 

  • Wallach D (1997) Placing death under control. Nature 388:123–126

    Google Scholar 

  • Wallach D, Boldin M, Goncharov T, Goltsev Y, Mett I, Malinin N, Adar R, Kovalenko A, Varfolomeev E (1996) Exploring cell death mechanisms by analyzing signaling cascades of the TNF/NGF receptor family. Behring Inst Mitt 97:144–155

    Google Scholar 

  • Ware CF, Crowe PD, Grayson MH, Androlewicz MJ, Browning JL (1992) Expression of surface lymphotoxin and tumor necrosis factor on activated T, B, and natural killer cells. J Immunol 149:3881–3888

    Google Scholar 

  • Watanabe Y, Morita M, Akaike T (1996) Concanavalin A induces perforin-mediated but not fas-mediated hepatic injury. Hepatology 24:702–710

    Google Scholar 

  • Weil M, Jacobson MD, Coles HSR, Davies TJ, Gardner RL, Raff KD, Raff MC (1996) Constitutive expression of the machinery for programmed cell death. J Cell Biol 133:1053–1059

    Google Scholar 

  • Weiner FR, Giambrone M, Czaja MJ, Shah A, Annoni G, Takahashi S, Eghbali M, Zern MA (1990) Ito-cell gene expression and collagen regulation. Hepatology 11:111–120

    Google Scholar 

  • Wendel A (1990) Biochemical pharmacology of inflammatory liver injury in mice. Methods Enzymol 186:675–680

    Google Scholar 

  • Williamson R (1970) Properties of rapidly labelled deoxyribonucleic acid fragments isolated from the cytoplasm of primary cultures of embryonic mouse liver cells. J Mol Biol 51:157–168

    Google Scholar 

  • Wong GHW, Kamb A, Goeddel DV (1992) Antiviral properties of TNF. In: Beutler B (ed) Tumor necrosis factors. The molecules and their emerging role in medicine. Raven, New York, pp 371–382

    Google Scholar 

  • Wyllie AH, Kerr JF, Currie AR (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68:251–306

    Google Scholar 

  • Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng T, Jones DP, Wang X (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275:1129–1132

    Google Scholar 

  • Yonehara S, Ishii A, Yonehara M (1989) A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor. J Exp Med 169:1747–1756

    Google Scholar 

  • Zabel P, Wolter DT, Schönharting MM, Schade UF (1989) Oxpentifylline in endotoxemia. Lancet II:1474–1477

    Google Scholar 

  • Zamzami N, Susin SA, Marchetti P, Hirsch T, Gómez-Monterrey I, Castedo M, Kroemer G (1996) Mitochondrial control of nuclear apoptosis. J Exp Med 183:1533–1544

    Google Scholar 

  • Zeid IM, Bronk SF, Fesmier PJ, Gores GJ (1997) Cycloprotection by fructose and other ketohexoses during bile salt-induced apoptosis of hepatocytes. Hepatol 25:81–86

    Google Scholar 

  • Zhivotovsky B, Burgess DH, Vanags DM, Orrenius S (1997) Involvement of cellular proteolytic machinery in apoptosis. Biochem Biophys Res Commun 230:481–488

    Google Scholar 

  • Zou H, Henzel WJ, Liu X, Lutschg A, Wang X (1997) Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90:405–413

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag

About this chapter

Cite this chapter

Leist, M., Gantner, F., Künstle, G., Wendel, A. (1998). Cytokine-mediated hepatic apoptosis. In: Reviews of Physiology Biochemistry and Pharmacology, Volume 133. Reviews of Physiology, Biochemistry and Pharmacology, vol 133. Springer, Berlin, Heidelberg. https://doi.org/10.1007/Bfb0000614

Download citation

  • DOI: https://doi.org/10.1007/Bfb0000614

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63945-9

  • Online ISBN: 978-3-540-69676-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics