Skip to main content

On permutations and permutation polytopes

Part of the Mathematical Programming Studies book series (MATHPROGRAMM,volume 8)

Abstract

An easy characterization is given of neighbors on permutation polytopes. Using this characterization it is shown that the graph of any such polytope is Hamiltonian, and that the diameter is two.

Key words

  • Polytopes
  • Permutation polyhedra
  • Comparability graphs
  • Permutation graphs Diameter

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V.J. Bowman, “Permutation polyhedra”, SIAM Journal of Applied Mathematics 22 (1972) 580–589.

    CrossRef  MATH  MathSciNet  Google Scholar 

  2. S. Even, A. Lempel and A. Pnueli, “Permutation graphs and transitive graphs”, Journal of the Association for Computing Machinery 19 (1972) 400–410.

    MATH  MathSciNet  Google Scholar 

  3. S. Even, A. Lempel and A. Pnueli, “Transitive orientation of graphs and identification of permutation graphs”, Canadian Journal of Mathematics 23 (1971) 160–175.

    MATH  MathSciNet  Google Scholar 

  4. P.C. Gilmore and A.J. Hoffman, “A characterization of comparability graphs and of interval graphs”, Canadian Journal of Mathematics 16 (1964) 539–548.

    MATH  MathSciNet  Google Scholar 

  5. S.M. Johnson, “Generation of permutations by adjacent transposition”, Mathematics of Computation (1963) 282–285.

    Google Scholar 

  6. H.F. Trotter, “Algorithm 115”, Communications of the Association of Computing Machinery 5 (1962) 434–435.

    Google Scholar 

  7. H.P. Young and A. Levenglick, “A consistent extension of Condorcet’s election principle”, SIAM Journal of Applied Mathematics, Part C, to appear.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

M. L. Balinski A. J. Hoffman

Rights and permissions

Reprints and permissions

Copyright information

© 1978 The Mathematical Programming Society

About this chapter

Cite this chapter

Young, H.P. (1978). On permutations and permutation polytopes. In: Balinski, M.L., Hoffman, A.J. (eds) Polyhedral Combinatorics. Mathematical Programming Studies, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0121198

Download citation

  • DOI: https://doi.org/10.1007/BFb0121198

  • Received:

  • Revised:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00789-7

  • Online ISBN: 978-3-642-00790-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics