Abstract
We consider solution strategies for stochastic programs whose deterministic equivalent programs take on the form: Find x∈ℝn, χ∈ℝm such that x≥0, Ax=b, Tx=χ and z=cx+Ψ(χ) is minimized. We suggest algorithms based upon (i) extensions of the revised simplex method, (ii) inner approximations (generalized programming techniques), (iii) outer approximations (min-max) strategies.
Key words
- Stochastic Programs with Recourse
- Generalized Programming
- Nonstochastic Tenders
- Inner Linearization
Present address: CDSS, P.O. Box 4908, Berkeley, CA 94704, USA
This is a preview of subscription content, log in via an institution.
Preview
Unable to display preview. Download preview PDF.
References
A. Bihain, “G.R.S.G. A general purpose N.D.O. Code”, Technical Report, University of Namur (Namur, 1978).
J. Birge, “Decomposition and partitioning methods for multistage stochastic linear programs”, Technical Report 82-6, University of Michigan (Ann Arbor, 1982).
J. Birge and R. Smith, “New Monte-Carlo procedures for numerical integration”, Technical Report, University of Michigan (Ann Arbor, 1982).
J. Birge and R. Wets, “Approximations and error bounds in stochastic programming”, in: Y. Tong, ed., Proceedings of the conference on inequalities in statistics and probability (Institute of Mathematical Statistics, Hayward, CA, 1984).
H. Cleef, “A solution procedure for the two-stage stochastic program with simple recourse”, Zeitschrift für Operations Research 25 (1981) 1–13.
G.B. Dantzig, Linear programming and extensions (Princeton University Press, Princeton, NJ, 1963).
I. Deak, “Three digit accurate multiple normal probabilities”, Numerische Mathematik 24 (1968) 342–380.
V.F. Demyanov, “Algorithms for some minimax problems”, Journal of Computer and System Sciences 2 (1968) 342–380.
V.F. Demyanov and L.V. Vasiliev, Nondifferentiable optimization (Nauka, Moscow, 1981) [In Russian].
B.C. Eaves and W. Zangwill, “Generalized cutting plane algorithms”, SIAM Journal on Control 9 (1971) 529–542.
Yu. Ermoliev, “Stochastic quasi-gradient methods and their application in systems optimization”, Stochastics 8 (1983).
R. Fletcher, Practical methods of optimization, Vol. 2: Constrained Optimization (Wiley, Chichester, 1981).
M. Frank and P. Wolfe, “An algorithm for quadratic programming”, Naval Research Logistics Quarterly 3 (1956) 95–110.
S.P. Han, “Superlinearly convergent variable metric algorithms for general nonlinear programming problems”, Mathematical Programming 11 (1976) 263–282.
S.P. Han, “Variable metric methods for minimizing a class of nondifferentiable functions”, Mathematical Programming 20 (1981) 1–12.
M. Hanscom, J.J. Strodiot and V.H. Nguyen, “Une approche de type gradient-reduit en optimization non-différentiable pour l’ordonnancement a moyen terme de la production d’énergie électrique”, manuscript, 1981.
B. Hansotia, “Some special cases of stochastic programs with recourse”, Operations Research 25 (1977) 361–363.
J.-B. Hiriart-Urruty, “Conditions necessaires d’optimalité pour un programme stochastique avec recourse”, SIAM Journal on Control and Optimization 16 (1978) 125–130.
W. Hogan, “Directional derivatives for extremal-value functions with applications to the completely convex case”, Operations Research 21 (1973) 188–209.
P. Kall, “Stochastic programming”, European Journal of Operations Research 10 (1982) 125–130.
J. Kallberg and M. Kusy, “Code instruction for S.L.P.R., a stochastic linear program with simple recourse”, Technical Report, University of British Columbia (Vancouver, 1976).
J. Kallberg and W. Ziemba, “An extended Frank-Wolfe algorithm with application to portfolio selection”, in: P. Kall and A. Prekopa, eds., Recent progress in stochastic programming (Springer-Verlag, Berlin, 1981a).
J. Kallberg and W. Ziemba, “An algorithm for portfolio revision: theory, computation algorithm and empirical results”, Applications of Management Science 1 (1981b) 267–291.
J. Kallberg, R. White and W. Ziemba, “Short term financial planning under uncertainty”, Management Science 28 (1982) 670–682.
M. Kusy and W. Ziemba, “A bank asset and liability management model”, Technical Report, University of British Columbia (Vancouver, 1981).
C. Lemarechal, “Bundle methods in nonsmooth optimization”, in: C. Lemarechal and R. Mifflin, eds., Nonsmooth optimization, IIASA Proceedings Series, Vol. 3 (International Institute for Applied Systems Analysis, Laxenburg, Austria, 1977) pp. 79–102.
C. Lemarechal, “Nonsmooth optimization and descent methods”, Research Report 78-4, International Institute for Applied Systems Analysis (Laxenburg, Austria, 1978).
K. Madsen and H. Schjaer-Jacobsen, “Linearly constrained minimax optimization”, Mathematical Programming 14 (1978) 208–223.
B. Murtagh and M. Saunders, “Large-scale linearly constrained optimization”, Mathematical Programming 14 (1978) 41–72.
K. Murty, “Linear programming under uncertainty: a basic property of the optimal solution”, Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 10 (1968) 284–288.
L. Nazareth, “Algorithms based upon generalized linear programming for stochastic programs with recourse”, to appear in Proceedings of IFIP Workshop on stochastic programming: algorithms and applications (Gargnano, Italy, September 16–21, 1983).
L. Nazareth and R.J.-B. Wets, “Stochastic programs with recourse: algorithms and implementation”, IIASA Working Paper 1985 (forthcoming).
P. Olsen, “Multistage stochastic programming with recourse: the equivalent deterministic program”, SIAM Journal on Control and Optimization 14 (1976) 495–517.
S.C. Parikh, “Lecture notes on stochastic programming”, University of California (Berkeley, CA, 1968).
P. Poljak, “Nonlinear programming methods in the presence of noise”, Mathematical Programming 14 (1978) 87–97.
M.J.D. Powell, “Algorithms for nonlinear constraints that use Lagrangian functions”, Mathematical Programming 14 (1978) 224–248.
K. Schittkowski, Nonlinear programming codes, Lecture Notes in Economics and Mathematical Systems (Springer-Verlag, Berlin, 1980).
N.Z. Shor, “Generalized gradient methods of nondifferentiable optimization employing space dilatation operators”, in: A. Bachem, M. Grötschel and B. Korte, eds., Mathematical Programming: The state of the art (Springer-Verlag, Berlin, 1983) pp. 501–529.
D. Topkis, “Cutting plane methods without nested constraint sets”, Operations Research 18 (1970) 403–413.
R. Van Slyke and R. Wets, “L-shaped linear program with applications to optimal control and stochastic linear programs”, SIAM Journal on Applied Mathematics 17 (1969) 638–663.
D. Walkup and R. Wets, “Stochastic programs with recourse: Special forms”, in: H. Kuhn, ed., Proceedings of the Princeton symposium on mathematical programming (Princeton University Press, Princeton, 1970) pp. 139–162.
R. Wets and C. Witzgall, “Algorithms for frames and linearity spaces of cones”, Journal of Research of National Bureau of Standards, Section B 71B (1967) 1–7.
R. Wets, “Stochastic programs with recourse: a basic theorem for multistage problems”, Zeitschrift für Wahrscheinlichkeitstheorie und verwandete Gebiete 21 (1972) 201–206.
R. Wets, “Stochastic programs with fixed recourse: the equivalent deterministic program”, SIAM Review 16 (1974) 309–339.
R. Wets, “Solving stochastic programs with simple recourse II”, Proceedings of Johns Hopkins Symposium on Systems and Information, 1975, pp. 1–6.
R. Wets, “A statistical approach to the solution of stochastic programs with (convex) simple recourse”, manuscript, Department of Mathematics, University of Kentucky (Lexington, 1976).
R. Wets, “Solving stochastic programs with simple recourse”, Stochastics 10 (1983a) 219–242.
R. Wets, “Stochastic programming: solution techniques and approximation schemes”, in: A. Bachem, M. Grötschel and B. Korte, eds., Mathematical programming: The state of the art (Springer-Verlag, Berlin, 1983b) pp. 566–603.
A. Wierzbicki, “Lagrangian functions and nondifferentiable optimization”, in: E. Nurminski, ed., Progress in nondifferentiable optimization, IIASA Collaborative Proceedings Series, CP-82-58 (1982) pp. 173–213.
A.C. Williams, “Approximation formulas for stochastic linear programming”, SIAM Journal on Applied Mathematics 14 (1966) 668–677.
P. Wolfe, “A method of conjugate subgradients for minimizing nondifferentiable functions”, Mathematical Programming Study 3 (1975) 145–173.
R. Womersly, “Numerical methods for structural problems in nonsmooth optimization”, Doctoral Thesis, University of Dundee, 1981.
W.I. Zangwill, Nonlinear programming: A unified approach (Prentice-Hall, Englewood Cliffs, 1969).
W.T. Ziemba, “Computational algorithms for convex stochastic programming with simple recourse”, Operations Research 18 (1970) 415–431.
W.T. Ziemba, “Solving nonlinear programming problems with stochastic objective functions”, Journal of Financial and Quantitative Analysis VII (1972) 1809–1827.
W.T. Ziemba, “Stochastic programs with simple recourse”, in: P. Hammer and G. Zoutendijk, Mathematical programming in theory and practice (North-Holland, Amsterdam, 1974) pp. 213–274.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1986 The Mathematical Programming Society, Inc.
About this chapter
Cite this chapter
Nazareth, J.L., Wets, R.JB. (1986). Algorithms for stochastic programs: The case of nonstochastic tenders. In: Prékopa, A., Wets, R.J.B. (eds) Stochastic Programming 84 Part II. Mathematical Programming Studies, vol 28. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0121123
Download citation
DOI: https://doi.org/10.1007/BFb0121123
Received:
Revised:
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-00926-6
Online ISBN: 978-3-642-00927-3
eBook Packages: Springer Book Archive
