Skip to main content

Algorithms for stochastic programs: The case of nonstochastic tenders

Part of the Mathematical Programming Studies book series (MATHPROGRAMM,volume 28)

Abstract

We consider solution strategies for stochastic programs whose deterministic equivalent programs take on the form: Find x∈ℝn, χ∈ℝm such that x≥0, Ax=b, Tx=χ and z=cx+Ψ(χ) is minimized. We suggest algorithms based upon (i) extensions of the revised simplex method, (ii) inner approximations (generalized programming techniques), (iii) outer approximations (min-max) strategies.

Key words

  • Stochastic Programs with Recourse
  • Generalized Programming
  • Nonstochastic Tenders
  • Inner Linearization

Present address: CDSS, P.O. Box 4908, Berkeley, CA 94704, USA

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • A. Bihain, “G.R.S.G. A general purpose N.D.O. Code”, Technical Report, University of Namur (Namur, 1978).

    Google Scholar 

  • J. Birge, “Decomposition and partitioning methods for multistage stochastic linear programs”, Technical Report 82-6, University of Michigan (Ann Arbor, 1982).

    Google Scholar 

  • J. Birge and R. Smith, “New Monte-Carlo procedures for numerical integration”, Technical Report, University of Michigan (Ann Arbor, 1982).

    Google Scholar 

  • J. Birge and R. Wets, “Approximations and error bounds in stochastic programming”, in: Y. Tong, ed., Proceedings of the conference on inequalities in statistics and probability (Institute of Mathematical Statistics, Hayward, CA, 1984).

    Google Scholar 

  • H. Cleef, “A solution procedure for the two-stage stochastic program with simple recourse”, Zeitschrift für Operations Research 25 (1981) 1–13.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • G.B. Dantzig, Linear programming and extensions (Princeton University Press, Princeton, NJ, 1963).

    MATH  Google Scholar 

  • I. Deak, “Three digit accurate multiple normal probabilities”, Numerische Mathematik 24 (1968) 342–380.

    Google Scholar 

  • V.F. Demyanov, “Algorithms for some minimax problems”, Journal of Computer and System Sciences 2 (1968) 342–380.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • V.F. Demyanov and L.V. Vasiliev, Nondifferentiable optimization (Nauka, Moscow, 1981) [In Russian].

    Google Scholar 

  • B.C. Eaves and W. Zangwill, “Generalized cutting plane algorithms”, SIAM Journal on Control 9 (1971) 529–542.

    CrossRef  MathSciNet  Google Scholar 

  • Yu. Ermoliev, “Stochastic quasi-gradient methods and their application in systems optimization”, Stochastics 8 (1983).

    Google Scholar 

  • R. Fletcher, Practical methods of optimization, Vol. 2: Constrained Optimization (Wiley, Chichester, 1981).

    MATH  Google Scholar 

  • M. Frank and P. Wolfe, “An algorithm for quadratic programming”, Naval Research Logistics Quarterly 3 (1956) 95–110.

    CrossRef  MathSciNet  Google Scholar 

  • S.P. Han, “Superlinearly convergent variable metric algorithms for general nonlinear programming problems”, Mathematical Programming 11 (1976) 263–282.

    CrossRef  MathSciNet  Google Scholar 

  • S.P. Han, “Variable metric methods for minimizing a class of nondifferentiable functions”, Mathematical Programming 20 (1981) 1–12.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • M. Hanscom, J.J. Strodiot and V.H. Nguyen, “Une approche de type gradient-reduit en optimization non-différentiable pour l’ordonnancement a moyen terme de la production d’énergie électrique”, manuscript, 1981.

    Google Scholar 

  • B. Hansotia, “Some special cases of stochastic programs with recourse”, Operations Research 25 (1977) 361–363.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • J.-B. Hiriart-Urruty, “Conditions necessaires d’optimalité pour un programme stochastique avec recourse”, SIAM Journal on Control and Optimization 16 (1978) 125–130.

    Google Scholar 

  • W. Hogan, “Directional derivatives for extremal-value functions with applications to the completely convex case”, Operations Research 21 (1973) 188–209.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • P. Kall, “Stochastic programming”, European Journal of Operations Research 10 (1982) 125–130.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • J. Kallberg and M. Kusy, “Code instruction for S.L.P.R., a stochastic linear program with simple recourse”, Technical Report, University of British Columbia (Vancouver, 1976).

    Google Scholar 

  • J. Kallberg and W. Ziemba, “An extended Frank-Wolfe algorithm with application to portfolio selection”, in: P. Kall and A. Prekopa, eds., Recent progress in stochastic programming (Springer-Verlag, Berlin, 1981a).

    Google Scholar 

  • J. Kallberg and W. Ziemba, “An algorithm for portfolio revision: theory, computation algorithm and empirical results”, Applications of Management Science 1 (1981b) 267–291.

    Google Scholar 

  • J. Kallberg, R. White and W. Ziemba, “Short term financial planning under uncertainty”, Management Science 28 (1982) 670–682.

    CrossRef  MATH  Google Scholar 

  • M. Kusy and W. Ziemba, “A bank asset and liability management model”, Technical Report, University of British Columbia (Vancouver, 1981).

    Google Scholar 

  • C. Lemarechal, “Bundle methods in nonsmooth optimization”, in: C. Lemarechal and R. Mifflin, eds., Nonsmooth optimization, IIASA Proceedings Series, Vol. 3 (International Institute for Applied Systems Analysis, Laxenburg, Austria, 1977) pp. 79–102.

    Google Scholar 

  • C. Lemarechal, “Nonsmooth optimization and descent methods”, Research Report 78-4, International Institute for Applied Systems Analysis (Laxenburg, Austria, 1978).

    MATH  Google Scholar 

  • K. Madsen and H. Schjaer-Jacobsen, “Linearly constrained minimax optimization”, Mathematical Programming 14 (1978) 208–223.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • B. Murtagh and M. Saunders, “Large-scale linearly constrained optimization”, Mathematical Programming 14 (1978) 41–72.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • K. Murty, “Linear programming under uncertainty: a basic property of the optimal solution”, Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 10 (1968) 284–288.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • L. Nazareth, “Algorithms based upon generalized linear programming for stochastic programs with recourse”, to appear in Proceedings of IFIP Workshop on stochastic programming: algorithms and applications (Gargnano, Italy, September 16–21, 1983).

    Google Scholar 

  • L. Nazareth and R.J.-B. Wets, “Stochastic programs with recourse: algorithms and implementation”, IIASA Working Paper 1985 (forthcoming).

    Google Scholar 

  • P. Olsen, “Multistage stochastic programming with recourse: the equivalent deterministic program”, SIAM Journal on Control and Optimization 14 (1976) 495–517.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • S.C. Parikh, “Lecture notes on stochastic programming”, University of California (Berkeley, CA, 1968).

    Google Scholar 

  • P. Poljak, “Nonlinear programming methods in the presence of noise”, Mathematical Programming 14 (1978) 87–97.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • M.J.D. Powell, “Algorithms for nonlinear constraints that use Lagrangian functions”, Mathematical Programming 14 (1978) 224–248.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • K. Schittkowski, Nonlinear programming codes, Lecture Notes in Economics and Mathematical Systems (Springer-Verlag, Berlin, 1980).

    Google Scholar 

  • N.Z. Shor, “Generalized gradient methods of nondifferentiable optimization employing space dilatation operators”, in: A. Bachem, M. Grötschel and B. Korte, eds., Mathematical Programming: The state of the art (Springer-Verlag, Berlin, 1983) pp. 501–529.

    Google Scholar 

  • D. Topkis, “Cutting plane methods without nested constraint sets”, Operations Research 18 (1970) 403–413.

    Google Scholar 

  • R. Van Slyke and R. Wets, “L-shaped linear program with applications to optimal control and stochastic linear programs”, SIAM Journal on Applied Mathematics 17 (1969) 638–663.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • D. Walkup and R. Wets, “Stochastic programs with recourse: Special forms”, in: H. Kuhn, ed., Proceedings of the Princeton symposium on mathematical programming (Princeton University Press, Princeton, 1970) pp. 139–162.

    Google Scholar 

  • R. Wets and C. Witzgall, “Algorithms for frames and linearity spaces of cones”, Journal of Research of National Bureau of Standards, Section B 71B (1967) 1–7.

    MathSciNet  Google Scholar 

  • R. Wets, “Stochastic programs with recourse: a basic theorem for multistage problems”, Zeitschrift für Wahrscheinlichkeitstheorie und verwandete Gebiete 21 (1972) 201–206.

    CrossRef  MathSciNet  Google Scholar 

  • R. Wets, “Stochastic programs with fixed recourse: the equivalent deterministic program”, SIAM Review 16 (1974) 309–339.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • R. Wets, “Solving stochastic programs with simple recourse II”, Proceedings of Johns Hopkins Symposium on Systems and Information, 1975, pp. 1–6.

    Google Scholar 

  • R. Wets, “A statistical approach to the solution of stochastic programs with (convex) simple recourse”, manuscript, Department of Mathematics, University of Kentucky (Lexington, 1976).

    Google Scholar 

  • R. Wets, “Solving stochastic programs with simple recourse”, Stochastics 10 (1983a) 219–242.

    MATH  MathSciNet  Google Scholar 

  • R. Wets, “Stochastic programming: solution techniques and approximation schemes”, in: A. Bachem, M. Grötschel and B. Korte, eds., Mathematical programming: The state of the art (Springer-Verlag, Berlin, 1983b) pp. 566–603.

    Google Scholar 

  • A. Wierzbicki, “Lagrangian functions and nondifferentiable optimization”, in: E. Nurminski, ed., Progress in nondifferentiable optimization, IIASA Collaborative Proceedings Series, CP-82-58 (1982) pp. 173–213.

    Google Scholar 

  • A.C. Williams, “Approximation formulas for stochastic linear programming”, SIAM Journal on Applied Mathematics 14 (1966) 668–677.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • P. Wolfe, “A method of conjugate subgradients for minimizing nondifferentiable functions”, Mathematical Programming Study 3 (1975) 145–173.

    MathSciNet  Google Scholar 

  • R. Womersly, “Numerical methods for structural problems in nonsmooth optimization”, Doctoral Thesis, University of Dundee, 1981.

    Google Scholar 

  • W.I. Zangwill, Nonlinear programming: A unified approach (Prentice-Hall, Englewood Cliffs, 1969).

    MATH  Google Scholar 

  • W.T. Ziemba, “Computational algorithms for convex stochastic programming with simple recourse”, Operations Research 18 (1970) 415–431.

    CrossRef  MathSciNet  Google Scholar 

  • W.T. Ziemba, “Solving nonlinear programming problems with stochastic objective functions”, Journal of Financial and Quantitative Analysis VII (1972) 1809–1827.

    CrossRef  Google Scholar 

  • W.T. Ziemba, “Stochastic programs with simple recourse”, in: P. Hammer and G. Zoutendijk, Mathematical programming in theory and practice (North-Holland, Amsterdam, 1974) pp. 213–274.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Andras Prékopa Roger J.- B. Wets

Rights and permissions

Reprints and permissions

Copyright information

© 1986 The Mathematical Programming Society, Inc.

About this chapter

Cite this chapter

Nazareth, J.L., Wets, R.JB. (1986). Algorithms for stochastic programs: The case of nonstochastic tenders. In: Prékopa, A., Wets, R.J.B. (eds) Stochastic Programming 84 Part II. Mathematical Programming Studies, vol 28. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0121123

Download citation

  • DOI: https://doi.org/10.1007/BFb0121123

  • Received:

  • Revised:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00926-6

  • Online ISBN: 978-3-642-00927-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics