Skip to main content

Optimality in convex programming: A feasible directions approach

  • Chapter
  • First Online:

Part of the book series: Mathematical Programming Studies ((MATHPROGRAMM,volume 19))

Abstract

First-order optimality conditions for convex programming are developed using a feasible directions approach. Numerical implementations and applications are discussed. The concepts of constancy directions and minimal index set of binding constraints, central to our theory, prove useful also in studying the stability of perturbed convex programs.

This author’s research has been partly supported by the Research Council of Canada.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Abrams, “Projections of convex programs with unattained infima”, SIAM Journal on Control 13 (1975) 706–718.

    Article  MATH  MathSciNet  Google Scholar 

  2. R.A. Abrams and L. Kerzner, “A simplified test for optimality”, Journal of Optimization Theory and Applications 25 (1978) 161–170.

    Article  MATH  MathSciNet  Google Scholar 

  3. R.L. Armacost and A.V. Fiacco, “Computational experience in sensitivity analysis for nonlinear programming”, Mathematical Programming 6 (1974) 301–326.

    Article  MATH  MathSciNet  Google Scholar 

  4. A. Ben-Israel and A. Ben-Tal, “On a characterization of optimality in convex programming”, Mathematical Programming 11 (1976) 81–88.

    Article  MATH  MathSciNet  Google Scholar 

  5. A. Ben-Israel, A. Ben-Tal and A. Charnes, “Necessary and sufficient conditions for a Paretooptimum in convex programming”, Econometrica 45 (1977) 811–820.

    Article  MATH  MathSciNet  Google Scholar 

  6. A. Ben-Israel, A. Ben-Tal and S. Zlobec, “Optimality conditions in convex programming”, in: A. Prékopa, ed., Survey of Mathematical programming: Proceedings of the IX international symposium on mathematical programming (Hungarian Academy of Sciences, Budapest and North-Holland, Amsterdam, 1979) pp. 153–169.

    Google Scholar 

  7. A. Ben-Israel, A. Ben-Tal and S. Zlobec, Optimality in nonlinear programming: A feasible directions approach (Wiley-Interscience, New York, 1981.)

    MATH  Google Scholar 

  8. A. Ben-Tal and A. Ben-Israel, “Characterizations of optimality in convex programming: The nondifferentiable case”, Applicable Analysis 9 (1979) 137–156.

    Article  MATH  MathSciNet  Google Scholar 

  9. A. Ben-Tal, A. Ben-Israel and S. Zlobec, “Characterizations of optimality in convex programming without a constraint qualification”, Journal of Optimization Theory and Applications 20 (1976) 417–437.

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Ben-Tal and S. Zlobec, “A new class of feasible direction methods”, unpublished manuscript.

    Google Scholar 

  11. A. Ben-Tal and S. Zlobec, “Convex programming and the lexicographic multicriteria problem”, Mathematische Operationsforschung und Statistik Series Optimization 8 (1977) 61–73.

    MathSciNet  Google Scholar 

  12. J.M. Borwein and H. Wolkowicz, “Characterizations of optimality without constraint qualification for the abstract convex program”, Department of Mathematics, Dalhousie University, Halifax, N.S., Canada (June 1979).

    Google Scholar 

  13. A. Charnes, and W.W. Cooper, Management models and industrial applications of linear programming 1 (Wiley, New York, 1961).

    Google Scholar 

  14. B. Craven and S. Zlobec, “Complete characterization of optimality for convex programming problems in abstract spaces”, Applicable Analysis 11 (1980) 61–78.

    Article  MATH  MathSciNet  Google Scholar 

  15. G.B. Dantzig, J. Folkman and N. Shapiro, “On the continuity of the minimum set of a continuous function”, Journal of Mathematical Analysis and Applications 17 (1967) 519–548.

    Article  MATH  MathSciNet  Google Scholar 

  16. A. Ya. Dubovitskii and A.A. Milyutin, “The extremum problems in the presence of constraints”, Doklady Akademii Nauk SSSR 149 (1963) 759–762.

    Google Scholar 

  17. I.I. Eremin and N.N. Astafiev, Introduction to the theory of linear and convex programming (Nauka, Moscow, 1976) (in Russian).

    MATH  Google Scholar 

  18. S. Gal, B. Bachelis and A. Ben-Tal, “On finding the maximal range of validity of a constrained system”, SIAM Journal on Control and Optimization 16 (1978) 473–503.

    Article  MATH  MathSciNet  Google Scholar 

  19. I.V. Girsanov, Lectures on mathematical theory of extremum problems (Springer, Berlin 1972).

    MATH  Google Scholar 

  20. F.J. Gould and J.W. Tolle, “Geometry of optimality conditions and constraint qualifications”, Mathematical Programming 2 (1972) 1–18.

    Article  MATH  MathSciNet  Google Scholar 

  21. M. Guignard, “Generalized Kuhn-Tucker conditions for mathematical programming problems in a Banach space”, SIAM Journal on Control 7 (1969) 232–241.

    Article  MATH  MathSciNet  Google Scholar 

  22. F. John, “Extremum problems with inequalities as subsidiary conditions”, in: K.O. Friedrichs, O.E. Neugebauer and J.J. Stoker, eds., Studies and essays: Courant anniversary volume (Wiley-Interscience, New York, 1948) pp. 187–204.

    Google Scholar 

  23. W. Karush, “Minima of functions on several variables with inequalities as side conditions”, M.Sc. Thesis, Department of Mathematics, University of Chicago (1939).

    Google Scholar 

  24. H.W. Kuhn, “Nonlinear programming: A historical view”, in: R.W. Cottle and C.E. Lemke, eds., Nonlinear programming SIAM-AMS Proceedings IX (American Mathematical Society, Providence, RI, 1976) pp. 1–26.

    Google Scholar 

  25. H.W. Kuhn and A.W. Tucker, “Nonlinear programming”, in: J. Neyman, ed., Proceedings of the second Berkeley symposium on mathematical statistics and probability (University of California Press, Berkeley, CA, 1951) pp. 481–492.

    Google Scholar 

  26. O.L. Mangasarian, Nonlinear programming (McGraw-Hill, New York, 1969).

    MATH  Google Scholar 

  27. H. Massam, “Optimality conditions for a cone-convex programming problem”, Journal of the Australian Mathematical Society Series A 27 (1979) 141–162.

    Article  MathSciNet  Google Scholar 

  28. B.N. Pshenichny, Necessary conditions for an extremum (Marcel Dekker, New York, 1971).

    Google Scholar 

  29. R.T. Rockafellar, Convex analysis (Princeton University Press, Princeton, NJ, 1970).

    MATH  Google Scholar 

  30. R.T. Rockafellar, “Some convex programs whose duals are linearly constrained” in: J.B. Rosen, O.L. Mangasarian and K. Ritter, eds., Nonlinear programming (Academic Press, New York, 1970).

    Google Scholar 

  31. H. Wolkowicz, “Calculating the cone of directions of constancy”, Journal of Optimization Theory and Applications 25 (1978) 451–457.

    Article  MATH  MathSciNet  Google Scholar 

  32. H. Wolkowicz, “Geometry of optimality conditions and constraint qualifications”, Mathematical Programming 19 (1980) 32–60.

    Article  MATH  MathSciNet  Google Scholar 

  33. H. Wolkowicz, “A strengthened test for optimality”, Research report, Department of Mathematics, The University of Alberta, Edmonton, Alta (November 1979).

    Google Scholar 

  34. S. Zlobec and A. Ben-Israel, “Duality in convex programming: A linearization approach”, Mathematische Operationsforschung und Statistik Series Optimization 10 (1979) 171–178.

    MATH  MathSciNet  Google Scholar 

  35. S. Zlobec and A. Ben-Israel, “Perturbed convex programs: Continuity of optimal solutions and optimal values”, in: W. Oettli and F. Steffens, eds., Operations Research Verfahren 31, 737–749, Proceedings of the III Symposium on Operations Research, University of Mannheim, September 6–8, 1978 (Athenäum/Hain/Scriptor/Hanstein, 1979).

    Google Scholar 

  36. S. Zlobec, R. Gardner and A. Ben-Israel, “Regions of stability for arbitrarily perturbed convex programs”, in: A.V. Fiacco, ed., Mathematical programming with data perturbations (Marcel Dekker, New York, 1981).

    Google Scholar 

  37. S. Zlobec, “Regions of stability for ill-posed convex programs”, Aplikace Matematiky (1981).

    Google Scholar 

  38. S. Zlobec, “Marginal values for stable perturbations in convex optimization”, Glasnik Matematički (to appear).

    Google Scholar 

  39. G. Zoutendijk, Methods of feasible directions (Elsevier, Amsterdam, 1960).

    MATH  Google Scholar 

  40. G. Zoutendijk, Mathematical programming methods (North-Holland, Amsterdam, 1976).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Monique Guignard

Rights and permissions

Reprints and permissions

Copyright information

© 1982 The Mathematical Programming Society, Inc.

About this chapter

Cite this chapter

Ben-Israel, A., Ben-Tal, A., Zlobec, S. (1982). Optimality in convex programming: A feasible directions approach. In: Guignard, M. (eds) Optimality and Stability in Mathematical Programming. Mathematical Programming Studies, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0120981

Download citation

  • DOI: https://doi.org/10.1007/BFb0120981

  • Received:

  • Revised:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00849-8

  • Online ISBN: 978-3-642-00850-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics