Skip to main content

Generalized equations and their solutions, Part I: Basic theory

  • Chapter
  • First Online:
Point-to-Set Maps and Mathematical Programming

Part of the book series: Mathematical Programming Studies ((MATHPROGRAMM,volume 10))

Abstract

We consider a class of “generalized equations,” involving point-to-set mappings, which formulate the problems of linear and nonlinear programming and of complementarity, among others. Solution sets of such generalized equations are shown to be stable under certain hypotheses; in particular a general form of the implicit function theorem is proved for such problems. An application to linear generalized equations is given at the end of the paper; this covers linear and convex quadratic programming and the positive semidefinite linear complementarity problem. The general nonlinear programming problem is treated in Part II of the paper, using the methods developed here.

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024 and by the National Science Foundation under Grant No. MCS74-20584 A02.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Brézis, Opérateurs maximaux monotones (North-Holland, Amsterdam, 1973).

    MATH  Google Scholar 

  2. R.W. Cottle, “Nonlinear programs with positively bounded Jacobians”, SIAM Journal on Applied Mathematics 14 (1966) 147–158.

    Article  MATH  MathSciNet  Google Scholar 

  3. J.W. Daniel, “Stability of the solution of definite quadratic programs”, Mathematical Programming 5 (1973) 41–53.

    Article  MATH  MathSciNet  Google Scholar 

  4. G.B. Dantzig and R.W. Cottle, “Positive (semi-) definite programming”, in: J. Abadie, ed., Nonlinear programming (North-Holland, Amsterdam, 1968) 55–73.

    Google Scholar 

  5. S. Kakutani, “A generalization of Brouwer’s fixed point theorem”, Duke Mathematical Journal 8 (1941) 457–459.

    Article  MATH  MathSciNet  Google Scholar 

  6. O.L. Mangasarian, Nonlinear programming (McGraw-Hill, New York, 1969).

    MATH  Google Scholar 

  7. J.J. Moré, “Coercivity conditions in nonlinear complementarity problems”, SIAM Review 16 (1974) 1–16.

    Article  MATH  MathSciNet  Google Scholar 

  8. J.J. Moré, “Classes of functions and feasibility conditions in nonlinear complementarity problems”, Mathematical Programming 6 (1974) 327–338.

    Article  MATH  MathSciNet  Google Scholar 

  9. H. Nikaido, Convex structures and economic theory (Academic Press, New York and London, 1968).

    MATH  Google Scholar 

  10. S.M. Robinson, “An implicit-function theorem for generalized variational inequalities”, Technical Summary Report No. 1672, Mathematics Research Center, University of Wisconsin-Madison, 1976; available from National Technical Information Service under Accession No. AD A031952.

    Google Scholar 

  11. S.M. Robinson, “A characterization of stability in linear programming”, Operations Research 25 (1977) 435–447.

    Article  MATH  MathSciNet  Google Scholar 

  12. R.T. Rockafellar, “Local boundedness of nonlinear, monotone operators”, Michigan Mathematical Journal 16 (1969) 397–407.

    Article  MATH  MathSciNet  Google Scholar 

  13. R.T. Rockafellar, Convex analysis (Princeton University Press, Princeton, NJ, 1970).

    MATH  Google Scholar 

  14. R.T. Rockafellar, “Monotone operators and the proximal point algorithm”, SIAM Journal of Control and Optimization 14 (1976), 877–898.

    Article  MATH  MathSciNet  Google Scholar 

  15. H. Scarf, The computation of economic equilibria (Yale University Press, New Haven and London, 1973).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

P. Huard

Rights and permissions

Reprints and permissions

Copyright information

© 1979 The Mathematical Programming Society

About this chapter

Cite this chapter

Robinson, S.M. (1979). Generalized equations and their solutions, Part I: Basic theory. In: Huard, P. (eds) Point-to-Set Maps and Mathematical Programming. Mathematical Programming Studies, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0120850

Download citation

  • DOI: https://doi.org/10.1007/BFb0120850

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00797-2

  • Online ISBN: 978-3-642-00798-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics