Point-to-Set Maps and Mathematical Programming pp 42-47

Part of the Mathematical Programming Studies book series (MATHPROGRAMM, volume 10) | Cite as

A multivalued approach to the Farkas lemma

  • J. M. Borwein
Chapter

Abstract

The Farkas lemma is examined in the context of point-to-set mappings. Some general non-linear inclusions are studied and the standard linear results are rederived in a strengthened and simplified form.

Key words

Multivalued Mappings Upper Semi-continuity Lower Semi-continuity Non-linear Farkas Lemmas Linear Theorems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. Berge, Topological spaces (Oliver and Boyd, London, 1963).MATHGoogle Scholar
  2. [2]
    J.M. Borwein, “Multivalued convexity and optimization: a unified approach to equality and inequality constraints”, Mathematical Programming 13 (1977) 163–180.CrossRefGoogle Scholar
  3. [3]
    B.D. Craven, “Nonlinear programming in locally convex spaces”, Journal of Optimization Theory and Applications 10 (1972) 197–210.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    T.M. Flett, “On differentiation in normed spaces”, Journal of the London Mathematical Society 42 (1967) 523–533.CrossRefMathSciNetGoogle Scholar
  5. [5]
    D.H. Fremlin, Topological Riesz spaces and measure theory (Cambridge University Press, Cambridge, 1974).MATHGoogle Scholar
  6. [6]
    K. Kuratowski, Topology, Volume 1 (revised) (Academic Press, New York, 1966).Google Scholar
  7. [7]
    R. Lehmann and W. Oettli, “The theorem of the alternative, the key theorem and the vector maximization problem, Mathematical Programming 8 (1975) 332–344.CrossRefMathSciNetGoogle Scholar
  8. [8]
    O.L. Mangasarian, Nonlinear programming (McGraw-Hill, New York, 1969).MATHGoogle Scholar
  9. [9]
    V.J. Manusco, “An Ascoli theorem for multivalued functions”, Journal of the Australian Mathematical Society 12 (1971) 466–477.CrossRefGoogle Scholar
  10. [10]
    A.L. Peressini, Ordered topological vector spaces (Harper and Row, New York, 1967).MATHGoogle Scholar
  11. [11]
    K. Ritter, “Optimization in linear spaces, I”, Mathematische Annalen 182 (1969) 189–206.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    K. Ritter, “Optimization in linear spaces, II”, Mathematische Annalen 183 (1969) 169–180.MATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    K. Ritter, “Optimization in linear spaces, III”, Mathematische, Annalen 184 (1970) 133–154.MATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    A.P. Robertson and W.J. Robertson, Topological vector spaces (Cambridge University Press, Cambridge, 1964).MATHGoogle Scholar
  15. [15]
    R.T. Rockafellar, Convex analysis (Princeton University Press, Princeton, 1970).MATHGoogle Scholar

Copyright information

© The Mathematical Programming Society 1979

Authors and Affiliations

  • J. M. Borwein
    • 1
  1. 1.Dalhousie UniversityHalifaxCanada

Personalised recommendations