Optimisation des reseaux electriques de grande taille

  • G. Blanchon
  • J. C. Dodu
  • J. F. Bonnans
Nonlinear Programming
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 144)

Résumé

Cet article décrit une méthode de programmation quadratique successive permettant de résoudre le problème de la répartition optimale des puissances dans un réseau électrique. Cette méthode converge globalement et superlinéairement. Des techniques ont été mises en oeuvre pour traiter des réseaux de grande taille. Le programme quadratique de chaque itération est résolu en utilisant un algorithme de gradient réduit avec factorisation LU des matrices de base et conjugaison des directions réduites. La méthode a été appliquée au problème particulier de l’optimisation du plan de tension à puissances actives fixées. Le réseau étudié possède 838 noeuds et 1330 lignes ou transformateurs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K. Aoki, M. Kaneshashi, A modified Newton method for aptimal power flow using quadratic approximated power flow, IEEE Trans. on PAS Vol. PAS-104, no8 (1985), 2119–2125.Google Scholar
  2. [2]
    D. Bertsekas, Constrained optimisation and Lagrande multiplier methods, Academic Press, New York, 1982.Google Scholar
  3. [3]
    G. Blanchon, J.C. Dodu, A. Merlin, Developing a new tool for real-time control in order to coordinate the regulation of reactivepower and the voltage schedule in large-scale EHV power systems, CIGRE-IFAC Inetrnational Symposium on Control Applications for Power Systems, Florence, 1983.Google Scholar
  4. [4]
    G. Blanchon, J.F. Bonnans, J.C. Dodu, Application d’une méthode de programmation quadratique successive à l’optimisation des puissances dans les réseaux électriques de grande taille, Bull. Dir. Etudes et Recherches, ser. C. EDF, à paraître.Google Scholar
  5. [5]
    J.F. Bonnans, Local study of Newton type algorithms for constrained problems, in Lecture Notes in Math. 1405, p. 13–24, S. Dolecki ed., Springer Verlag, 1989.Google Scholar
  6. [6]
    J.F. Bonnans, Asymptotic admissibility of the unit stepsize in exact penalty methods, SIAM J. Control Optim. 27, p. 631–641, 1989.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    R.C. Burchett, H.H. Happ, D.R. Vierath, Quadratically convergent optimal power flow, IEEE PES Winter Meeting, Paper 84 WM 045-1, Dallas, Texas, 1984.Google Scholar
  8. [8]
    J. Carpentier, Differential injections method: a general method for secure and optimal load flow, Proc. of the IEEE PICA Conference, Minneapolis (1973), 255–262.Google Scholar
  9. [9]
    R. Fletcher, Practical methods of optimization (second edition), Wiley, Chichester, 1987.MATHGoogle Scholar
  10. [10]
    L. Franchi, M. Innorta, P. Marannino, The Han-Powell algorithm applied to the optimization of the reactive generation in a large-scale electric power system, Proc. of the IFAC Symposium Large Scale Systems, Warsaw, 1983.Google Scholar
  11. [11]
    T.C. Giras, S.N. Talukdar, Quasi-Newton method for optimal power flows, Int. J. of Electrical Power and Energy Systems, Vol. 3, no 2 (1981), 59–64.CrossRefGoogle Scholar
  12. [12]
    S.P. Han, A globally convergent method for nonlinear programming, J. Optimiz. Theory Appl. 22, p. 297–309, 1977.MATHCrossRefGoogle Scholar
  13. [13]
    G.A. Maria, J.A. Findlay, A Newton optimal power flow program for Ontario Hydro EMS, IEEE Trans. on Power Systems, Vol. PWRS-2, no 3 (1987), 576–584.CrossRefGoogle Scholar
  14. [14]
    B.A. Murthagh, M.A. Saunders, A projected lagrangian algorithm and its implementation for sparse nonlinear programming bases, Math. Programming Study 16, p. 84–117, 1982.Google Scholar
  15. [15]
    J.K. Reid, A sparsity variant of the Bartels-Golub decomposition for linear programming bases, Math. Prog. 24, p. 55–69, 1982.MATHCrossRefGoogle Scholar
  16. [16]
    D.F. Shanno, R.E. Marsten, Conjugate gradient methods for linearly constrained nonlinear programming. Math. Programming Study 16, p. 149–161, 1982.MATHMathSciNetGoogle Scholar
  17. [17]
    D.I. Sun, B. Ashley, B. Brewer, A. Hughes, W.F. Tinney, Optimal power flow by Newton approach, IEEE PES Winter Meeting, Paper 84 WM 044-4, Dallas, Texas, 1984.Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • G. Blanchon
    • 1
  • J. C. Dodu
    • 1
  • J. F. Bonnans
    • 2
  1. 1.Direction des Etudes et RecherchesEDFClamartFrance
  2. 2.Domaine de VoluceauINRIARocquencourtFrance

Personalised recommendations