Skip to main content

The physiological role of titin in striated muscle

  • Chapter
  • First Online:

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 138))

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akster HA, Granzier HLM, Focant B (1989) Differences in I band structure, sarcomere extensibility, and electrophoresis of titin between two muscle fiber types of the perch (Perca fluviatilis L.). J Ultrastruct Mol Struct Res 102:109–121

    Article  Google Scholar 

  2. Brady AJ, Farnsworth SP (1986) Cardiac myocyte stiffness following extraction with detergent and high salt solutions. Am J Physiol 250:h932–943

    PubMed  CAS  Google Scholar 

  3. Carlsen F, Knappeis GG, Buchthal F (1961) Ultrastructure of the resting and contracted striated muscle fiber at different degrees of stretch. J Biophys Biochem Cytol 11:95–117

    Article  PubMed  CAS  Google Scholar 

  4. Erickson HP (1994) Reversible unfolding of fibronectin type III and immunoglobulin domains provides the structural basis for stretch and elasticity of titin and fibronectin. Proc Natl Acad Sci USA 91:10114–10118

    Article  PubMed  CAS  Google Scholar 

  5. Funatsu T, Higuchi H, Ishiwata S (1990) Elastic filaments in skeletal muscle revealed by selective removal of thin filaments with plasma gelsolin. J Cell Biol 110:53–62

    Article  PubMed  CAS  Google Scholar 

  6. Funatsu T, Kono E, Higuchi H, Kimura S, Ishiwata S, Yoshioka T, Maruyama K, Tsukita S (1993) Elastic filaments in situ in cardiac muscle: deep-etch replica analysis in combination with selective removal of actin and myosin filaments. J Cell Biol 120:711–724

    Article  PubMed  CAS  Google Scholar 

  7. Furst DO, Nave R, Osborn M, Weber K (1989) Repetitive titin epitopes with a 42 nm spacing coincide in relative position with known A band striations also identified by major myosin-associated proteins. An immunoelectronmicroscopical study on myofibrils. J Cell Sci 94:119–125

    PubMed  Google Scholar 

  8. Furst DO, Osborn M, Nave R, Weber K (1988) The organization of titin filaments in the half-sarcomere revealed by monoclonal antibodies in immunoelectron microscopy: a map of ten nonrepetitive epitopes starting at the Z line extends close to the M line. J Cell Biol 106:1563–1572

    Article  PubMed  CAS  Google Scholar 

  9. Gassner D (1986) Myofibrillar interaction of blot immunoaffinity-purified antibodies against native titin as studied by direct immunofluorescence and immunogold staining. Eur J Cell Biol 40:176–184

    PubMed  CAS  Google Scholar 

  10. Gautel M, Goulding D (1996) A molecular map of titin/connectin elasticity reveals two different mechanisms acting in series. FEBS Lett 385:11–14

    Article  PubMed  CAS  Google Scholar 

  11. Granzier H, Helmes M, Trombitas K (1996) Nonuniform elasticity of titin in cardiac myocytes: a study using immunoelectron microscopy and cellular mechanics. Biophys J 70:430–442

    Article  PubMed  CAS  Google Scholar 

  12. Granzier HL, Irving TC (1995) Passive tension in cardiac muscle: contribution of collagen, titin, microtubules, and intermediate filaments. Biophys J 68:1027–1044

    Article  PubMed  CAS  Google Scholar 

  13. Granzier HL, Wang K (1993) Passive tension and stiffness of vertebrate skeletal and insect flight muscles: the contribution of weak cross-bridges and elastic filaments. Biophys J 65:2141–2159

    Article  PubMed  CAS  Google Scholar 

  14. Grimby L, Hannerz J (1977) Firing rate and recruitment order of toe extensor motor units in different modes of voluntary conraction. J Physiol (Lond) 264:865–879

    CAS  Google Scholar 

  15. Hannerz J (1974) Discharge properties of motor units in relation to recruitment order in voluntary contraction. Acta Physiol Scand 91:374–385

    Article  PubMed  CAS  Google Scholar 

  16. Hattori A, Ishii T, Tatsumi R, Takahashi K (1995) Changes in the molecular types of connectin and nebulin during development of chicken skeletal muscle. Biochim Biophys Acta 1244:179–184

    PubMed  Google Scholar 

  17. Hein S, Scholz D, Fujitani N, Rennollet H, Brand T, Friedl A, Schaper J (1994) Altered expression of titin and contractile proteins in failing human myocardium. J Mol Cell Cardiol 26:1291–1306

    Article  PubMed  CAS  Google Scholar 

  18. Helmes M, Trombitas K, Granzier H (1996) Titin develops restoring force in rat cardiac myocytes. Circ Res 79:619–626

    PubMed  CAS  Google Scholar 

  19. Higuchi H (1987) Lattice swelling with the selective digestion of elastic components in single-skinned fibers of frog muscle. Biophys J 52:29–32

    Article  PubMed  CAS  Google Scholar 

  20. Higuchi H (1992) Changes in contractile properties with selective digestion of connectin (titin) in skinned fibers of frog skeletal muscle. J Biochem (Tokyo) 111:291–295

    CAS  Google Scholar 

  21. Higuchi H, Suzuki T, Kimura S, Yoshioka T, Maruyama K, Umazume Y (1992) Localization and elasticity of connectin (titin) filaments in skinned frog muscle fibres subjected to partial depolymerization of thick filaments. J Muscle Res Cell Motil 13:285–294

    Article  PubMed  CAS  Google Scholar 

  22. Higuchi H, Umazume Y (1985) Localization of the parallel elastic components in frog skinned muscle fibers studied by the dissociation of the Aand Ibands. Biophys J 48:137–147

    Article  PubMed  CAS  Google Scholar 

  23. Higuchi H, Umazume Y (1986) Lattice shrinkage with increasing resting tension in stretched, single skinned fibers of frog muscle. Biophys J 50:385–389

    Article  PubMed  CAS  Google Scholar 

  24. Higuchi H, Yoshioka T, Maruyama K (1988) Positioning of actin filaments and tension generation in skinned muscle fibres released after stretch beyond overlap of the actin and myosin filaments. J Muscle Res Cell Motil 9:491–498

    Article  PubMed  CAS  Google Scholar 

  25. Hill C, Weber K (1986) Monoclonal antibodies distinguish titins from heart and skeletal muscle. J Cell Biol 102:1099–1108

    Article  PubMed  CAS  Google Scholar 

  26. Horowits R (1992) Passive force generation and titin isoforms in mammalian skeletal muscle. Biophys J 61:392–398

    Article  PubMed  CAS  Google Scholar 

  27. Horowits R, Dalakas MC, Podolsky RJ (1990) Single skinned muscle fibers in Duchenne muscular dystrophy generate normal force. Ann Neurol 27:636–641

    Article  PubMed  CAS  Google Scholar 

  28. Horowits R, Kempner ES, Bisher ME, Podolsky RJ (1986) A physiological role for titin and nebulin in skeletal muscle. Nature 323:160–164

    Article  PubMed  CAS  Google Scholar 

  29. Horowits R, Maruyama K, Podolsky RJ (1989) Elastic behavior of connectin filaments during thick filament movement in activated skeletal muscle. J Cell Biol 109:2169–2176

    Article  PubMed  CAS  Google Scholar 

  30. Horowits R, Podolsky RJ (1987) The positional stability of thick filaments in activated skeletal muscle depends on sarcomere length: evidence for the role of titin filaments. J Cell Biol 105:2217–2223

    Article  PubMed  CAS  Google Scholar 

  31. Horowits R, Podolsky RJ (1988) Thick filament movement and isometric tension in activated skeletal muscle. Biophys J 54:165–171

    Article  PubMed  CAS  Google Scholar 

  32. Hu DH, Kimura S, Maruyama K (1986) Sodium dodecyl sulfate gel electrophoresis studies of connectin-like high molecular weight proteins of various types of vertebrate and invertebrate muscles. J Biochem (Tokyo) 99:1485–1492

    CAS  Google Scholar 

  33. Huxley AF, Peachey LD (1961) The maximum length for contraction in vertebrate striated muscle. J Physiol (Lond) 156:150–165

    CAS  Google Scholar 

  34. Ishiwata S, Yasuda K, Shindo Y, Fujita H (1996) Microscopic analysis of the elastic properties of connectin/titin and nebulin in myofibrils. Adv Biophys 33:135–142

    Article  PubMed  CAS  Google Scholar 

  35. Itoh Y, Matsuura T, Kimura S, Maruyama K (1988) Absence of nebulin in cardiac muscles of the chicken embryo. Biomed Res 9:331–333

    CAS  Google Scholar 

  36. Itoh Y, Suzuki T, Kimura S, Ohashi K, Higuchi H, Sawada H, Shimizu T, Shibata M, Maruyama K (1988) Extensible and less-extensible domains of connectin filaments in stretched vertebrate skeletal muscle sarcomeres as detected by immunofluorescence and immunoelectron microscopy using monoclonal antibodies. J Biochem (Tokyo) 104:504–508

    CAS  Google Scholar 

  37. Jewell BR (1977) A reexamination of the influence of muscle length on myocardial performance. Circ Res 40:221–230

    PubMed  CAS  Google Scholar 

  38. Jin JP (1995) Cloned rat cardiac titin class I and class II motifs. Expression, purification, characterization, and interaction with F-actin. I Biol Chem 270:6908–6916

    CAS  Google Scholar 

  39. Kawaguchi N, Fujitani N, Schaper J, Onishi S (1995) Pathological changes of myocardial cytoskeleton in cardiomyopathic hamster. Mol Cell Biochem 144:75–79

    Article  PubMed  CAS  Google Scholar 

  40. Kawamura Y, Kume H, Itoh Y, Ohtsuka S, Kimura S, Maruyama K (1995) Localization of three fragments of connectin in chicken breast muscle sarcomeres. J Biochem (Tokyo) 117:201–207

    CAS  Google Scholar 

  41. Kellermayer MS, Granzier HL (1996) Calcium-dependent inhibition of in vitro thin-filament motility by native titin. FEBS Lett 380:281–286

    Article  PubMed  CAS  Google Scholar 

  42. Kellermayer MS, Granzier HL (1996) Elastic properties of single titin molecules made visible through fluorescent F-actin binding. Biochem Biophys Res Commun 221:491–497

    Article  PubMed  CAS  Google Scholar 

  43. Kellermayer MSZ, Smith SB, Granzier HL, Bustamante C (1997) Foldingunfolding transitions in single titin molecules characterized with laser tweezers. Science 276:1112–1116

    Article  PubMed  CAS  Google Scholar 

  44. Kempner ES (1988) Molecular size determination of enzymes by radiation inactivation. Adv Enzymol Relat Areas Mol Biol 61:107–147

    Article  PubMed  CAS  Google Scholar 

  45. Labeit S, Gautel M, Lakey A, Trinick J (1992) Towards a molecular understanding of titin. Embo J 11:1711–1716

    PubMed  CAS  Google Scholar 

  46. Labeit S, Kolmerer B (1995) Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science 270:293–296

    Article  PubMed  CAS  Google Scholar 

  47. Labeit S, Kolmerer B, Linke WA (1997) The giant protein titin. Emerging roles in physiology and pathophysiology. Circ Res 80:290–294

    PubMed  CAS  Google Scholar 

  48. Li Q, Jin JP, Granzier HL (1995) The effect of genetically expressed cardiac titin fragments on in vitro actin motility. Biophys J 69:1508–1518

    Article  PubMed  CAS  Google Scholar 

  49. Linke WA, Bartoo ML, Ivemeyer M, Pollack GH (1996) Limits of titin extension in single cardiac myofibrils. J Muscle Res Cell Motil 17:425–438

    Article  PubMed  CAS  Google Scholar 

  50. Linke WA, Ivemeyer M, Labeit S, Hinssen H, Ruegg JC, Gautel M (1997) Actintitin interaction in cardiac myofibrils: probing a physiological role. Biophys J 73:905–919

    Article  PubMed  CAS  Google Scholar 

  51. Linke WA, Ivemeyer M, Olivieri N, Kolmerer B, Ruegg JC, Labeit S (1996) Towards a molecular understanding of the elasticity of titin. J Mol Biol 261:62–71

    Article  PubMed  CAS  Google Scholar 

  52. Linke WA, Ivemeyer M, Ruegg JC, Gautel M (1997) A physiological role for actin-titin interaction in cardiac myofibrils. Biophys J 72:A389

    Article  Google Scholar 

  53. Linke WA, Popov VI, Pollack GH (1994) Passive and active tension in single cardiac myofibrils. Biophys J 67:782–792

    Article  PubMed  CAS  Google Scholar 

  54. Locker RH, Daines GJ, Leet NG (1976) Histology of highly-stretched beef muscle. III. Abnormal contraction patterns in ox muscle, produced by overstretching during prerigor blending. J Ultrastruct Res 55:173–181

    Article  PubMed  CAS  Google Scholar 

  55. Locker RH, Leet NG (1975) Histology of highly-stretched beef muscle. I. The fine structure of grossly stretched single fibers. J Ultrastruct Res 52:64–75

    Article  PubMed  CAS  Google Scholar 

  56. Magid A, Law DJ (1985) Myofibrils bear most of the resting tension in frog skeletal muscle. Science 230:1280–1282

    Article  PubMed  CAS  Google Scholar 

  57. Magid A, Ting-Beall HP, Carvell M, Kontis T, Lucaveche C (1984) Connecting filaments, core filaments, and side-struts: a proposal to add three new loadbearing structures to the sliding filament model. Adv Exp Med Biol 170:307–328

    PubMed  CAS  Google Scholar 

  58. Maruyama K (1986) Connectin, an elastic filamentous protein of striated muscle. Int Rev Cytol 104:81–114

    Article  PubMed  CAS  Google Scholar 

  59. Maruyama K, Endo T, Kume H, Kawamura Y, Kanzawa N, Nakauchi Y, Kimura S, Kawashima S, Maruyama K (1993) A novel domain sequence of connectin localized at the I band of skeletal muscle sarcomeres: homology to neurofilament subunits. Biochem Biophys Res Commun 194:1288–1291

    Article  PubMed  CAS  Google Scholar 

  60. Maruyama K, Kimura M, Kimura S, Ohashi K, Suzuki K, Katunuma N (1981) Connectin, an elastic protein of muscle. Effects of proteolytic enzymes in situ. J Biochem (Tokyo) 89:711–715

    CAS  Google Scholar 

  61. Maruyama K, Kimura S, Ohashi K, Kuwano Y (1981) Connectin, an elastic protein of muscle. Identification of titin with connectin. J Biochem (Tokyo) 89:701–709

    CAS  Google Scholar 

  62. Maruyama K, Kimura S, Yoshidomi H, Sawada H, Kikuchi M (1984) Molecular size and shape of beta-connectin, an elastic protein of striated muscle. J Biochem (Tokyo) 95:1423–1433

    CAS  Google Scholar 

  63. Maruyama K, Matsubara S, Natori R, Nonomura Y, Kimura S (1977) Connectin, an elastic protein of muscle. Characterization and Function. J Biochem (Tokyo) 82:317–337

    CAS  Google Scholar 

  64. Maruyama K, Sawada H, Kimura S, Ohashi K, Higuchi H, Umazume Y (1984) Connectin filaments in stretched skinned fibers of frog skeletal muscle. J Cell Biol 99:1391–1397

    Article  PubMed  CAS  Google Scholar 

  65. Maruyama K, Yoshioka T, Higuchi H, Ohashi K, Kimura S, Natori R (1985) Connectin filaments link thick filaments and Z lines in frog skeletal muscle as revealed by immunoelectron microscopy. J Cell Biol 101:2167–2172

    Article  PubMed  CAS  Google Scholar 

  66. Morano I, Hadicke K, Grom S, Koch A, Schwinger RH, Bohm M, Bartel S, Erdmann E, Krause EG (1994) Titin, myosin light chains and C-protein in the developing and failing human heart. J Mol Cell Cardiol 26:361–368

    Article  PubMed  CAS  Google Scholar 

  67. Natori R, Umazume Y, Natori R (1980) The elastic structure of sarcomere: the relation of connectin filaments with thick and thin filaments. Jikeikai Med J 27:83–97

    Google Scholar 

  68. Nave R, Furst DO, Weber K (1989) Visualization of the polarity of isolated titin molecules: a single globular head on a long thin rod as the M band anchoring domain? J Cell Biol 109:2177–2187

    Article  PubMed  CAS  Google Scholar 

  69. Noble MI (1978) The Frank-Starling curve. Clin Sci Mol Med 54:1–7

    PubMed  CAS  Google Scholar 

  70. Pate E, Cooke R (1991) Simulation of stochastic processes in motile crossbridge systems. J Muscle Res Cell Motil 12:376–393

    Article  PubMed  CAS  Google Scholar 

  71. Pfuhl M, Gautel M, Politou AS, Joseph C, Pasture A (1995) Secondary structure determination by NMR spectroscopy of an immunoglobulin-like domain from the giant muscle protein titin. J Biomol NMR 6:48–58

    Article  PubMed  CAS  Google Scholar 

  72. Pierobon BS, Betto R, Salviati G (1989) The organization of titin (connectin) and nebulin in the sarcomeres: an immunocytolocalization study. J Muscle Res Cell Motil 10:446–456

    Article  Google Scholar 

  73. Pierobon BS, Biral D, Betto R, Salviati G (1992) Immunoelectron microscopic epitope locations of titin in rabbit heart muscle. J Muscle Res Cell Motil 13:35–38

    Article  Google Scholar 

  74. Podolsky RJ, Horowits R, Tanaka H (1991) Ordering mechanisms in striated muscle fibers. In: Ozawa E, Masaki T, Nabeshima Y (eds) Frontiers in muscle research. Elsevier Science Publishers, New York, NY

    Google Scholar 

  75. Politou AS, Gautel M, Improta S, Vangelista L, Pastore A (1996) The elastic Iband region of titin is assembled in a “modular” fashion by weakly interacting Ig-like domains. J Mol Biol 255:604–616

    Article  PubMed  CAS  Google Scholar 

  76. Politou AS, Gautel M, Pfuhl M, Labeit S, Pastore A (1994) Immunoglobulintype domains of titin: same fold, different stability? Biochemistry 33:4730–4737

    Article  PubMed  CAS  Google Scholar 

  77. Politou AS, Thomas DJ, Pastore A (1995) The folding and stability of titin immunoglobulin-like modules, with implications for the mechanism of elasticity. Biophys J 69:2601–2610

    Article  PubMed  CAS  Google Scholar 

  78. Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276:1109–1112

    Article  PubMed  CAS  Google Scholar 

  79. Roos KP, Brady AJ (1989) Stiffness and shortening changes in myofilamentextracted rat cardiac myocytes. Am J Physiol 256:H539–551

    PubMed  CAS  Google Scholar 

  80. Salviati G, Betto R, Ceoldo S, Pierobon BS (1990) Morphological and functional characterization of the endosarcomeric elastic filament. Am J Physiol 259:144–149

    Google Scholar 

  81. Sebestyen MG, Wolff JA, Greaser ML (1995) Characterization of a 5.4 kb cDNA fragment from the Z-line region of rabbit cardiac titin reveals phosphorylation sites for proline-directed kinases. J Cell Sci 108:3029–3037

    PubMed  CAS  Google Scholar 

  82. Sjostrand FS (1962) The connections between Aand I-band filaments in striated frog muscle. J Ultrastruct Res 7:225–246

    Article  PubMed  CAS  Google Scholar 

  83. Soteriou A, Clarke A, Martin S, Trinick J (1993) Titin folding energy and elasticity. Proc R Soc Lond B Biol Sci 254:83–86

    Article  CAS  Google Scholar 

  84. Stedman H, Browning K, Oliver N, Oronzi-Scott M, Fischbeck K, Sarkar S, Sylvester J, Schmickel R, Wang K (1988) Nebulin cDNAs detect a 25-kilobase transcript in skeletal muscle and localize to human chromosome 2. Genomics 2:1–7

    Article  PubMed  CAS  Google Scholar 

  85. Trinick J, Knight P, Whiting A (1984) Purification and properties of native titin. J Mol Biol 180:331–356

    Article  PubMed  CAS  Google Scholar 

  86. Trinick JA (1981) End-filaments: a new structural element of vertebrate skeletal muscle thick filaments. J Mol Biol 151:309–314

    Article  PubMed  CAS  Google Scholar 

  87. Trombitas K, Baatsen PH, Kellermayer MS, Pollack GH (1991) Nature and origin of gap filaments in striated muscle. J Cell Sci 100:809–814

    PubMed  Google Scholar 

  88. Trombitas K, Granzier H (1997) Actin-titin interaction in the I-band of rat cardiac myocytes. Biophys J 72:A276

    Google Scholar 

  89. Trombitas K, Jin JP, Granzier H (1995) The mechanically active domain of titin in cardiac muscle. Circ Res 77:856–861

    PubMed  CAS  Google Scholar 

  90. Trombitas K, Pollack GH (1993) Elastic properties of the titin filament in the Z-line region of vertebrate striated muscle. J Muscle Res Cell Motil 14:416–422

    Article  PubMed  CAS  Google Scholar 

  91. Trombitas K, Pollack GH, Wright J, Wang K (1993) Elastic properties of titin filaments demonstrated using a freeze-break technique. Cell Motil Cytoskeleton 24:274–283

    Article  PubMed  CAS  Google Scholar 

  92. Tskhovrebova L, Trinick J (1997) Direct visualization of extensibility in isolated titin molecules. J Mol Biol 265:100–106

    Article  PubMed  CAS  Google Scholar 

  93. Tskhovrebova L, Trinick J, Sleep JA, Simmons RM (1997) Elasticity and unfolding of single molecules of the giant muscle protein titin. Nature 387:308–312

    Article  PubMed  CAS  Google Scholar 

  94. Wang K (1985) Sarcomere-associated cytoskeletal lattices in striated muscle. Review and hypothesis. Cell Muscle Motil 6:315–369

    PubMed  CAS  Google Scholar 

  95. Wang K, McCarter R, Wright J, Beverly J, Ramirez MR (1991) Regulation of skeletal muscle stiffness and elasticity by titin isoforms: a test of the segmental extension model of resting tension. Proc Natl Acad Sci USA 88:7101–7105

    Article  PubMed  CAS  Google Scholar 

  96. Wang K, McCarter R, Wright J, Beverly J, Ramirez MR (1993) Viscoelasticity of the sarcomere matrix of skeletal muscles. The titin-myosin composite filament is a dual-stage molecular spring. Biophys J 64:1161–1177

    Article  PubMed  CAS  Google Scholar 

  97. Wang K, McClure J, Tu A (1979) Titin: major myofibrillar components of striated muscle. Proc Natl Acad Sci USA 76:3698–3702

    Article  PubMed  CAS  Google Scholar 

  98. Wang K, Ramirez MR, Palter D (1984) Titin is an extraordinarily long, flexible, and slender myofibrillar protein. Proc Natl Acad Sci USA 81:3685–3689

    Article  PubMed  CAS  Google Scholar 

  99. Wang K, Ramirez-Mitchell R (1983) A network of transverse and longitudinal intermediate filaments is associated with sarcomeres of adult vertebrate skeletal muscle. J Cell Biol 96:562–570

    Article  PubMed  CAS  Google Scholar 

  100. Wang K, Wright J (1988) Architecture of the sarcomere matrix of skeletal muscle: immunoelectron microscopic evidence that suggests a set of parallel inextensible nebulin filaments anchored at the Z line. J Cell Biol 107:2199–2212

    Article  PubMed  CAS  Google Scholar 

  101. Wang K, Wright J, Ramirez-Mitchell R (1984) Architecture of the titin/nebulin containing cytoskeletal lattice of the striated muscle sarcomere — evidence of elastic and inelastic domains of the bipolar filaments. J Cell Biol 99:435a

    Article  Google Scholar 

  102. Wang SM, Greaser ML (1985) Immunocytochemical studies using a monoclonal antibody to bovine cardiac titin on intact and extracted myofibrils. J Muscle Res Cell Motil 6:293–312

    Article  PubMed  CAS  Google Scholar 

  103. Wang SM, Sun MC, Jeng CJ (1991) Location of the C-terminus of titin at the Zline region in the sarcomere. Biochem Biophys Res Commun 176:189–193

    Article  PubMed  CAS  Google Scholar 

  104. Warmolts JR, Engel WK (1972) Open-biopsy electromyography. I. Correlation of motor unit behavior with histochemical muscle fiber type in human limb muscle. Arch Neurol 27:512–517

    PubMed  CAS  Google Scholar 

  105. Whiting A, Wardale J, Trinick J (1989) Does titin regulate the length of muscle thick filaments? J Mol Biol 205:263–268

    Article  PubMed  CAS  Google Scholar 

  106. Yasuda K, Anazawa T, Ishiwata S (1995) Microscopic analysis of the elastic properties of nebulin in skeletal myofibrils. Biophys J 68:598–608

    Article  PubMed  CAS  Google Scholar 

  107. Yoshidomi H, Ohashi K, Maruyama K (1985) Changes in the molecular size of connectin, an elastic protein, in chicken skeletal muscle during embryonic and neonatal development. Biomed Res 6:207–212

    CAS  Google Scholar 

  108. Yoshioka T, Higuchi H, Kimura S, Ohashi K, Umazume Y, Maruyama K (1986) Effects of mild trypsin treatment on the passive tension generation and connectin splitting in stretched skinned fibers from frog skeletal muscle. Biomed Res 7:181–186

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag

About this chapter

Cite this chapter

Horowits, R. (1999). The physiological role of titin in striated muscle. In: Reviews of Physiology, Biochemistry and Pharmacology. Reviews of Physiology, Biochemistry and Pharmacology, vol 138. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0119624

Download citation

  • DOI: https://doi.org/10.1007/BFb0119624

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65484-1

  • Online ISBN: 978-3-540-49231-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics