Advertisement

Integrability of quantum chains: Theory and applications to the spin-1/2 XXZ chain

  • Andreas Klümper
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 645)

Abstract

In this contribution we review the theory of integrability of quantum systems in one spatial dimension. We introduce the basic concepts such as the Yang-Baxter equation, commuting currents, and the algebraic Bethe ansatz. Quite extensively we present the treatment of integrable quantum systems at finite temperature on the basis of a lattice path integral formulation and a suitable transfer matrix approach (quantum transfer matrix). The general method, is carried out for the seminal model of the spin-1/2 XXZ chain for which thermodynamic properties like specific heat, magnetic susceptibility and the finite temperature Drude weight of the thermal conductivity are derived.

Keywords

Transfer Matrix Finite Temperature Heisenberg Chain Boltzmann Weight Integrable Quantum System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Takahashi: Phys. Lett. A 36 (4), 325–6 (1971).ADSCrossRefGoogle Scholar
  2. 2.
    M. Gaudin: Phys. Rev. Lett. 26(21), 1301–04 (1971).ADSCrossRefGoogle Scholar
  3. 3.
    P. Schlottmann: J. Phys. Cond. Mat. 4, 7565–7578 (1992).ADSCrossRefGoogle Scholar
  4. 4.
    G. Jüttner, A. Klümper, and J. Suzuki: Nucl. Phys. B 487, 650–674 (1997).ADSCrossRefGoogle Scholar
  5. 5.
    S. Suga and A. Okiji: Physica B 237, 81–83 (1997).ADSCrossRefGoogle Scholar
  6. 6.
    N. Kawakami, T. Usuki, and A. Okiji: Phys. Lett. A 137(6), 287–290 (1989).ADSCrossRefGoogle Scholar
  7. 7.
    G. Jüttner, A. Klümper, and J. Suzuki: Nucl. Phys. B 522, 471 (1998).ADSCrossRefGoogle Scholar
  8. 8.
    H. J. Schulz: Correlated Electron Systems, volume 9, page 199, World Scientific, Singapore, (1993).Google Scholar
  9. 9.
    V. E. Korepin and F. H. L. Essler: Exactly Solvable Models of Strongly Correlated Electrons, World Scientific: Singapore, (1994).CrossRefzbMATHGoogle Scholar
  10. 10.
    E. H. Lieb, Advances in Dynamical Systems and Quantum Physics, page 173, World Scientific, Singapore, (1995).Google Scholar
  11. 11.
    B. Sutherland: Phys. Rev. B 12(9), 3795–805, (1975).ADSCrossRefGoogle Scholar
  12. 12.
    P. Schlottmann: Phys. Rev. B 36, 5177 (1987).ADSCrossRefGoogle Scholar
  13. 13.
    H. Bethe: Z. Physik 71(3/4), 205–26 (1931).ADSCrossRefGoogle Scholar
  14. 14.
    C.N. Yang: Phys. Rev. Lett. 19, 1312 (1967).ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    P. A. Bares, G. Blatter, and M. Ogata: Phys. Rev. B 44, 130 (1991).ADSCrossRefGoogle Scholar
  16. 16.
    N. Kawakami and S. K. Yang: Phys. Rev. Lett. 65(18), 2309–2311 (1990).ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    R. Z. Bariev, A. Klümper, A. Schadschneider, and J. Zittartz: Z. Physik B 96(3), 395–400 (1995).ADSCrossRefGoogle Scholar
  18. 18.
    G. Jüttner and A. Klümper: Euro. Phys. Letts. 37, 335 (1997).ADSCrossRefGoogle Scholar
  19. 19.
    G. Jüttner, A. Klümper, and J. Suzuki: Nucl. Phys. B 487, 650 (1997).ADSCrossRefGoogle Scholar
  20. 20.
    J. H. H. Perk and C. L. Schultz: Phys. Lett. A 84(8), 407–410 (1981).ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    B. Sutherland: J. Math. Phys. 11(11), 3183–6 (1970).ADSCrossRefGoogle Scholar
  22. 22.
    R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, (London 1982).zbMATHGoogle Scholar
  23. 23.
    M. Takahashi: Prog. Theor. Phys. 46(2), 401–15 (1971).ADSCrossRefGoogle Scholar
  24. 24.
    C. N. Yang and C.P. Yang: J. Math. Phys. 10(7), 1115–22 (1969).ADSCrossRefGoogle Scholar
  25. 25.
    M. Wadati and G. Kato: J. Math. Phys. 43, 5069 (2002).MathSciNetGoogle Scholar
  26. 26.
    M. Takahashi. Simplification of thermodynamic Bethe ansatz equations, condmat/0010486. (2000 unpublished).Google Scholar
  27. 27.
    T. Koma: Prog. Theor. Phys. 78(6), 1213–8 (1987).ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    M. Suzuki and M. Inoue: Prog. Theor. Phys. 78(4), 787–99 (1987).ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    R. Z. Bariev: Theor. and Math. Phys. 49, 1021 (1982).ADSCrossRefGoogle Scholar
  30. 30.
    T. T. Truong and K. D. Schotte: Nucl. Phys. B 220[FS8](1), 77–101 (1983).ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    J. Suzuki, Y. Akutsu, and M. Wadati: J. Phys. Soc. Japan 59(8), 2667–80 (1990).ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    J. Suzuki, T. Nagao, and M. Wadati: Int. J. Mod. Phys. B 6(8), 1119–80 (1992).ADSCrossRefGoogle Scholar
  33. 33.
    M. Takahashi: Phys. Rev. B 13, 5788–5797 (1991). see also vol. 44 p. 12382ADSCrossRefGoogle Scholar
  34. 34.
    A. Klümper: Ann. Physik 1(7), 540–553 (1992).MathSciNetCrossRefGoogle Scholar
  35. 35.
    A. Klümper: Z. Physik B 91(4), 507 (1993).ADSCrossRefGoogle Scholar
  36. 36.
    M. Suzuki and M. Inoue: Prog. Theor. Phys. 78, 787 (1987).ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    J. Suzuki, Y. Akutsu, and M. Wadati: J. Phys. Soc. Japan 59, 2667 (1990).ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    A. Kuniba, K. Sakai, and J. Suzuki: Nucl. Phys. B 525, 597–626 (1998).ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    M. Takahashi, M. Shiroishi, and A. Klümper, J. Phys. A 34, L187–194 (2001).ADSCrossRefGoogle Scholar
  40. 40.
    L. Hulthén, Arkiv för Matematik, Astronomi och Fysik 26 A(11), 1–105 (1938).Google Scholar
  41. 41.
    A. Klümper and M. T. Batchelor, J. Phys. A 23(5), L189–95 (1990).ADSCrossRefGoogle Scholar
  42. 42.
    A. Klümper, M. T. Batchelor, and P. A. Pearce, J. Phys. A 24(13), 3111–33 (1991).ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    C. Destri and H. J. de Vega: Phys. Rev. Lett. 69(16), 2313–17 (1992).ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    S. Eggert, I. Affleck, and M. Takahashi, Phys. Rev. Lett. 73, 332 (1994).ADSCrossRefGoogle Scholar
  45. 45.
    A. Klümper, Euro. Phys. J. B 5, 677 (1998).ADSCrossRefGoogle Scholar
  46. 46.
    A. Klümper and D. C. Johnton, Phys. Rev. Lett. 84, 4701 (2000).ADSCrossRefGoogle Scholar
  47. 47.
    S. Lukyanov, Nucl. Phys. B 522, 533 (1998).ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    S. Takagi, H. Deguchi, K. Takeda, M. Mito, and M. Takahashi, Journal of the Physical Society of Japan 65, 1934–1937 (1996).ADSCrossRefGoogle Scholar
  49. 49.
    R. Kubo, J. Phys. Soc. Japan 12, 570 (1957).ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    G. D. Mahan, Many-Particle Physics, Plenum Press. (1981).Google Scholar
  51. 51.
    X. Zotos, F. Naef, and P.P. Sek: Phys. Rev. B 55, 11029 (1997).ADSCrossRefGoogle Scholar
  52. 52.
    M. Lüscher, Nucl. Phys. B 117, 475 (1976).ADSCrossRefGoogle Scholar
  53. 53.
    M. P. Grabowski and P. Mathieu, Mod. Phys. Lett. A 9, 2197 (1994).ADSMathSciNetCrossRefGoogle Scholar
  54. 54.
    A. M. Tsvelik: Phys. Rev. B 42, 779 (1990).ADSMathSciNetCrossRefGoogle Scholar
  55. 55.
    H. Frahm, J. Phys. A 25, 1417 (1992).ADSMathSciNetCrossRefGoogle Scholar
  56. 56.
    Z. Rácz, J. Stat. Phys. 101, 273 (2000).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Andreas Klümper
    • 1
  1. 1.Theoretische PhysikUniversität WuppertalWuppertalGermany

Personalised recommendations