Advertisement

The coupled cluster method applied to quantum magnetism

  • Damian J. J Farnell
  • Raymond F. Bishop
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 645)

Abstract

The Coupled Cluster Method (CCM) is one of the most powerful and universally applied techniques of quantum many-body theory. In particular, it has been used extensively in order to investigate many types of lattice quantum spin system at zero temperature. The ground-and excited-state properties of these systems may now be determined routinely to great accuracy. In this Chapter we present an overview of the CCM formalism and we describe how the CCM is applied in detail. We illustrate the power and versatility of the method by presenting results for four different spin models. These are, namely, the XXZ model, a Heisenberg model with bonds of differing strengths on the square lattice, a model which interpolates between the Kagomé-and triangular-lattice antiferromanets and a frustrated ferrimagnetic spin system on the square lattice. We consider the ground-state properties of all of these systems and we present accurate results for the excitation energies of the spin-half square-lattice XXZ model. We utilise an “extended” SUB2 approximation scheme, and we demonstrate how this approximation may be solved exactly by using Fourier transform methods or, alternatively, by determining and solving the SUB2-m problem. We also present the results of “localised” approximation schemes called the LSUBm or SUBm-m schemes. We note that we must utilise computational techniques in order to solve these localised approximation schemes to “high order.” We show that we are able to determine the positions of quantum phase transitions with much accuracy, and we demonstrate that we are able to determine their quantum criticality by using the CCM in conjunction with the coherent anomaly method (CAM). Also, we illustrate that the CCM may be used in order to determine the “nodal surfaces” of lattice quantum spin systems. Finally, we show how connections to cumulant series expansions may be made by determining the perturbation series of a spin-half triangular-lattice antiferromagnet using the CCM at various levels of LSUBm approximation.

Keywords

Quantum Phase Transition Couple Cluster Quantum Magnetism Exact Diagonalisations Sublattice Magnetisation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.H. Kalos: Phys. Rev. 128, 1791 (1962).ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    D.M. Ceperley and M.H. Kalos. In: Monte Carlo Methods in Statistical Physics, edited by K. Binder (Springer Verlag, Berlin, 1979), p. 145.CrossRefGoogle Scholar
  3. 3.
    K. Schmidt and M.H. Kalos. In: Applications of the Monte Carlo Method in Statistical Physics, edited by K. Binder (Springer Verlag, Berlin, 1984), p. 125.CrossRefGoogle Scholar
  4. 4.
    R. Guardiola. In: Microscopic Quantum-Many-Body Theories and Their Applications, edited by J. Navarro and A. Polls, Lect. Notes Phys. 510, 269 (Springer-Verlag, Berlin-Heidelberg 1998).CrossRefGoogle Scholar
  5. 5.
    J.W. Clark and E. Feenberg: Phys. Rev. 113, 388 (1959).ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    H.W. Jackson and E. Feenberg: Rev. Mod. Phys. 34, 686 (1962).ADSCrossRefGoogle Scholar
  7. 7.
    E. Feenberg. In: Theory of Quantum Liquids, edited by K. Binder, (Springer-Verlag, New York, 1969).Google Scholar
  8. 8.
    J.W. Clark. In: Progress in Particle and Nuclear Physics Vol. 2, edited by D.H. Wilkinson. (Pergamon, Oxford, 1979), p. 89.Google Scholar
  9. 9.
    V.R. Pandharipande and R.B. Wiringa: Rev. Mod. Phys. 51, 821 (1979).ADSCrossRefGoogle Scholar
  10. 10.
    E. Krotscheck and J.W. Clark: Nucl. Phys. A333, 77 (1980).CrossRefGoogle Scholar
  11. 11.
    J.W. Clark. In: The Many-Body Problem: Jastrow Correlations Versus Brueckner Theory, edited by R. Guardiola and J. Ros, Lect. Notes Phys. 138, 184 (Springer-Verlag, Berlin-Heidelberg 1981).CrossRefGoogle Scholar
  12. 12.
    S. Rosati. In: International School of Physics Enrico Fermi, Course LXXIX, edited by A. Molinari (North-Holland, Amsterdam, 1981), p. 73.Google Scholar
  13. 13.
    A. Fabrocini and S. Fantoni. In: First International Course on Condensed Matter, edited by D. Prosperi, S. Rosati and S. Violini, ACIF Series, Vol. 8 (World Scientific, Singapore, 1987), p. 87.Google Scholar
  14. 14.
    S. Fantoni and V.R. Pandharipande: Phys. Rev. C 37, 1687 (1988).ADSCrossRefGoogle Scholar
  15. 15.
    S. Fantoni and A. Fabrocini. In: Microscopic Quantum Many-Body Theories and Their Applications, edited by J. Navarro and A. Polls, Lect. Notes Phys. 510, 119 (Springer-Verlag, Berlin-Heidelberg 1998).CrossRefGoogle Scholar
  16. 16.
    F. Coester: Nucl. Phys. 7, 421 (1958); F. Coester and H. Kümmel, ibid. 17, 477 (1960).CrossRefGoogle Scholar
  17. 17.
    J. Čižek: J. Chem. Phys. 45, 4256 (1966); Adv. Chem. Phys. 14, 35 (1969).CrossRefGoogle Scholar
  18. 18.
    R.F. Bishop and K.H. Lührmann: Phys. Rev. B 17, 3757 (1978).ADSCrossRefGoogle Scholar
  19. 19.
    H. Kümmel, K.H. Lührmann and J.G. Zabolitzky: Phys Rep. 36C, 1 (1978).ADSCrossRefGoogle Scholar
  20. 20.
    J.S. Arponen: Ann. Phys. (N.Y.) 151, 311 (1983).ADSCrossRefGoogle Scholar
  21. 21.
    R.F. Bishop and H. Kümmel: Phys. Today 40(3), 52 (1987).CrossRefGoogle Scholar
  22. 22.
    J.S. Arponen, R.F. Bishop and E. Pajanne: Phys. Rev. A 36, 2519 (1987); ibid. 36, 2539 (1987): In: Condensed Matter Theories, Vol. 2, edited by P. Vashishta, R.K. Kalia, and R.F. Bishop (Plenum, New York, 1987), p. 357.ADSCrossRefGoogle Scholar
  23. 23.
    R.J. Bartlett: J. Phys. Chem. 93, 1697 (1989)CrossRefGoogle Scholar
  24. 24.
    R.F. Bishop: Theor. Chim. Acta 80, 95 (1991).CrossRefGoogle Scholar
  25. 25.
    R. Jastrow: Phys. Rev. 98, 1479 (1955).ADSCrossRefGoogle Scholar
  26. 26.
    F. Iwamoto and M. Yamada: Prog. Theor. Phys. 17, 543 (1957).ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    J.W. Clark and P. Westhaus: J. Math. Phys. 9, 131 (1968), P. Westhaus and J.W. Clark: ibid. 9, 149 (1968).ADSCrossRefGoogle Scholar
  28. 28.
    M. Gaudin, J. Gillespie, and G. Ripka: Nucl. Phys. A176, 237 (1971); S. Fantoni and S. Rosati: Nuovo Cim. 20A, 179 (1974); G. Ripka: Phys. Rep. 56 1 (1979): Nucl. Phys. A314 115 (1979).CrossRefGoogle Scholar
  29. 29.
    S. Fantoni and S. Rosati: Lett. Nuovo Cim. 10, 545 (1974); E. Krotscheck and M.L. Ristig: Phys. Lett. 48A, 17 (1974); Nucl. Phys. A242, 389 (1975).CrossRefGoogle Scholar
  30. 30.
    S. Rosati and M. Viviani. In: First International Course on Condensed Matter. edited by D. Prosperi, S. Rosati, and G. Violini, ACIF Series, Vol. 8 (World Scientific, Singapore, 1988), p.231.Google Scholar
  31. 31.
    R.F. Bishop, D.J.J. Farnell, and J.B. Parkinson: Phys. Rev. B 61, 6775 (2000).ADSCrossRefGoogle Scholar
  32. 32.
    R.F. Bishop, D.J.J. Farnell, and Chen Zeng: Phys. Rev. B 59, 1000 (1999).ADSCrossRefGoogle Scholar
  33. 33.
    W. Marshall: Proc. R. Soc. London Ser. A 232, 48 (1955).ADSCrossRefGoogle Scholar
  34. 34.
    H. A. Bethe: Z. Phys. 71, 205 (1931).ADSCrossRefGoogle Scholar
  35. 35.
    L. Hulthén: Ark. Mat. Astron. Fys. A 26, No. 11 (1938).Google Scholar
  36. 36.
    R. Orbach: Phys. Rev. 112, 309 (1958); C.N. Yang and C.P. Yang: ibid. 150, 321 (1966): ibid. 150, 327 (1966).ADSCrossRefGoogle Scholar
  37. 37.
    J. Des Cloiseaux and J.J. Pearson: Phys. Rev. 128, 2131 (1962): L.D. Faddeev and L.A. Takhtajan: Phys. Lett. 85A, 375 (1981).ADSCrossRefGoogle Scholar
  38. 38.
    S.R. White and R. Noack: Phys. Rev. Lett. 68, 3487 (1992); S.R. White: ibid. 69, 2863 (1992); Phys. Rev. B 48 10345 (1993).ADSCrossRefGoogle Scholar
  39. 39.
    Low-Dimensional Quantum Field Theories for Condensed Matter Physicists. edited by L. Yu, S. Lundquist, and G. Morandi. Series in Modern Condensed Matter Physics, Vol. 7 (World Scientific, Singapore, 1995).Google Scholar
  40. 40.
    M.L. Ristig and J.W. Kim: Phys. Rev. B 53, 6665 (1996).ADSCrossRefGoogle Scholar
  41. 41.
    M.L. Ristig, J.W. Kim, and J.W. Clark. In: Theory of Spin Lattices and Lattice Gange Models, edited by J.W. Clark and M.L. Ristig, Lecture Notes in Physics, Vol. 494 (Springer-Verlag, Berlin 1997), p. 62.CrossRefGoogle Scholar
  42. 42.
    M.L. Ristig, J.W. Kim, and J.W. Clark: Phys. Rev. B, 57, 56 (1998).ADSCrossRefGoogle Scholar
  43. 43.
    R.F. Bishop, D.J.J. Farnell, and M.L. Ristig. In: Condensed Matter Theories, Vol. 14, edited by D.J. Ernst, I.E. Perakis, and A.S. Umar (Nova Science Publ., Huntington, New York, 2000), p. 191.Google Scholar
  44. 44.
    D. J. J. Farnell and M. L. Ristig. In: Advances in Quantum Many-Body Theory, Vol. 5 edited by Raymond F. Bishop, Klaus A. Gernoth, and Niels R. Walet, p. 223 (World Scientific, Singapore, 2001).CrossRefGoogle Scholar
  45. 45.
    A.D. Jackson, A. Lande, and R.A. Smith: Phys. Rev. Lett., 54, 1469 (1985); E. Krotscheck, R.A. Smith, and A.D. Jackson. Phys. Rev. A 33, 3535 (1986).ADSCrossRefGoogle Scholar
  46. 46.
    R.F. Bishop. In: Recent Progress in Many-Body Theories, Vol. 4, edited by E. Schachinger, H. Mitter, and H. Sormann (Plenum Press, New York, 1995). p. 195.CrossRefGoogle Scholar
  47. 47.
    M. Roger and J.H. Hetherington: Phys. Rev. B 41, 200 (1990); Europhys. Lett. 11, 255 (1990).ADSCrossRefGoogle Scholar
  48. 48.
    R.F. Bishop, J.B. Parkinson, and Y. Xian Phys. Rev. B 44, 9425 (1991).ADSCrossRefGoogle Scholar
  49. 49.
    R.F. Bishop, J.B. Parkinson, and Y. Xian: Phys. Rev. B 46, 880 (1992).ADSCrossRefGoogle Scholar
  50. 50.
    R.F. Bishop, J.B. Parkinson, and Y. Xian: J. Phys. Condens. Matter 5, 9169. (1993).ADSCrossRefGoogle Scholar
  51. 51.
    D.J.J. Farnell and J.B. Parkinson: J. Phys.: Condens. Matter 6, 5521 (1994).ADSGoogle Scholar
  52. 52.
    Y. Xian: J. Phys.: Condens. Matter 6, 5965 (1994).ADSGoogle Scholar
  53. 53.
    R. Bursill, G.A. Gehring, D.J.J. Farnell, J.B. Parkinson, T. Xiang, and C. Zeng: J. Phys.: Condens. Matter 7, 8605 (1995).ADSGoogle Scholar
  54. 54.
    R. Hale, Ph.D. Thesis, UMIST, Manchester, United Kingdom (1995).Google Scholar
  55. 55.
    R.F. Bishop, R.G. Hale, and Y. Xian: Phys. Rev. Lett. 73, 3157 (1994).ADSCrossRefGoogle Scholar
  56. 56.
    R.F. Bishop, D.J.J. Farnell, and J.B. Parkinson: J. Phys.: Condens. Matter 8, 11153 (1996).ADSGoogle Scholar
  57. 57.
    D.J.J. Farnell, S.A. Krüger, and J.B. Parkinson: J. Phys.: Condens. Matter 9, 7601 (1997).ADSGoogle Scholar
  58. 58.
    R.F. Bishop, Y. Xian, and C. Zeng. In: Condensed Matter Theories, Vol. 11, edited by E.V. Ludeña, P. Vashishta, and R.F. Bishop (Nova Science, Commack, New York, 1996), p. 91.Google Scholar
  59. 59.
    C. Zeng, D.J.J. Farnell, and R.F. Bishop: J. Stat. Phys., 90, 327 (1998).ADSCrossRefGoogle Scholar
  60. 60.
    R.F. Bishop, D.J.J. Farnell, and J.B. Parkinson. Phys. Rev. B 58, 6394 (1998).ADSCrossRefGoogle Scholar
  61. 61.
    J. Rosenfeld, N.E. Ligterink, and R.F. Bishop: Phys. Rev. B 60, 4030 (1999).ADSCrossRefGoogle Scholar
  62. 62.
    R.F. Bishop, D.J.J. Farnell, S.E. Krüger, J.B. Parkinson, J. Richter, and C. Zeng: J. Phys.: Condens. Matter 12, 7601 (2000).Google Scholar
  63. 63.
    R.F. Bishop, D.J.J. Farnell, and M.L. Ristig: Int. J. Mod. Phys. B 14, 1517 (2000).ADSGoogle Scholar
  64. 64.
    S.E. Krüger, J. Richter, J. Schulenberg, D.J.J. Farnell, and R.F. Bishop: Phys. Rev. B 61, 14607 (2000).ADSCrossRefGoogle Scholar
  65. 65.
    D.J.J. Farnell, R.F. Bishop, and K.A. Gernoth: Phys. Rev. B 63, 220402R (2001).ADSCrossRefGoogle Scholar
  66. 66.
    D.J.J. Farnell, K.A. Gernoth, and R.F. Bishop: Phys. Rev. B 64, 172409 (2001).ADSCrossRefGoogle Scholar
  67. 67.
    D.J.J. Farnell, K.A. Gernoth, and R.F. Bishop: J. Stat. Phys. 108, 401 (2002).CrossRefGoogle Scholar
  68. 68.
    N.B. Ivanov, J. Richter, and D.J.J. Farnell: Phys. Rev. B 66, 014421 (2002).ADSCrossRefGoogle Scholar
  69. 69.
    C.H. Llewellyn Smith and N.J. Watson: Phys. Lett. B 302, 463 (1993).ADSCrossRefGoogle Scholar
  70. 70.
    R.F. Bishop, A.S. Kendall, L.Y. Wong, and Y. Xian: Phys. Rev. D 48, 887 (1993); S.J. Baker, R.F. Bishop, and N.J. Davidson: Phys. Rev D 53, 2610 (1996): Nucl. Phys. B (Proc. Supp.) 53, 834 (1997).ADSCrossRefGoogle Scholar
  71. 71.
    N.E. Ligterink, N.R. Walet, and R.F. Bishop: Ann. Phys. (NY) 284, 215 (2000).ADSMathSciNetCrossRefGoogle Scholar
  72. 72.
    N.E. Ligterink, N.R. Walet, and R.F. Bishop: Ann. Phys. (NY) 267, 97 (1998): Phys. Rev. E 63, 037103 (2001).ADSCrossRefGoogle Scholar
  73. 73.
    T. Barnes, D. Kotchan, and E.S. Swanson: Phys. Rev. B 39, 4357 (1989).ADSCrossRefGoogle Scholar
  74. 74.
    P. W. Anderson: Phys. Rev. 86, 694 (1952).; T. Oguchi: Phys. Rev. 117, 117 (1960).ADSCrossRefGoogle Scholar
  75. 75.
    W. Zheng, J. Oitmaa, and C.J. Hamer: Phys. Rev. B 43, 8321 (1991).ADSCrossRefGoogle Scholar
  76. 76.
    A.W. Sandvik: Phys. Rev. B 56, 11678 (1997).ADSCrossRefGoogle Scholar
  77. 77.
    S.E. Krüger, D.J.J. Farnell, and J. Richter. In: Proceedings of the 11 th International Conference on Recent Progress in, Many-Body Theories, edited by R.F. Bishop, T. Brandes, K.A. Gernoth, N.R. Walet, and Y. Xian, Series on Advances in Quantum Many-Body Theory Vol. 6, (World Scientific, Singapore, 2002) p. 365.CrossRefGoogle Scholar
  78. 78.
    M. Suzuki: J. Phys. Soc. Japan 55, 4205 (1986).ADSCrossRefGoogle Scholar
  79. 79.
    R.R.P. Singh, M.P. Gelfand, and D.A. Huse: Phys. Rev. Lett, 61, 2484, (1988).ADSCrossRefGoogle Scholar
  80. 80.
    N.B. Ivanov, S.E. Krüger, and J. Richter: Phys. Rev. B 53, 2633 (1996).ADSCrossRefGoogle Scholar
  81. 81.
    S.E. Krüger and J. Richter: Phys. Rev. B 64 024433, (2001).ADSCrossRefGoogle Scholar
  82. 82.
    P. Tomezak and J. Richter: J. Phys. A: Math. Gen. 34 L461, (2001).ADSCrossRefGoogle Scholar
  83. 83.
    D.J.J. Farnell and R.F. Bishop: arXiv.cond-mat/0311126.Google Scholar
  84. 84.
    S. Chakravarty, B.I. Halperin and D.R. Nelson: Phys. Rev. B 39, 2344, (1989).ADSCrossRefGoogle Scholar
  85. 85.
    R.R.P. Singh and D.A. Huse: Phys. Rev. Lett. 68, 1766 (1992).ADSCrossRefGoogle Scholar
  86. 86.
    B. Bernn, P. Lecheminant, C. Lhuillier, and L. Pierre: Phys. Scripta, T 49, 192 (1993); Phys. Rev. B 50, 10018 (1994).CrossRefGoogle Scholar
  87. 87.
    T. Jolicoeur and J.C. LeGuillon: Phys. Rev. B 40, 2727 (1989).ADSCrossRefGoogle Scholar
  88. 88.
    P. Lecheminant, B. Bernu, C. Lhuillier, L. Pierre, and P. Sindzingre: Phys. Rev. B 56, 2521 (1997).ADSCrossRefGoogle Scholar
  89. 89.
    C. Waldtmann, H.U. Everts, B. Bernu, C. Lhuillier, P. Sindzingre, P. Lecheminant, and L. Pierre: Eur. Phys. J. B 2, 501 (1998).ADSCrossRefGoogle Scholar
  90. 90.
    P. Chandra and B. Docout: Phys. Rev. B 38, 9335 (1988).ADSCrossRefGoogle Scholar
  91. 91.
    H.J. Schulz and T.A.L. Ziman: Europhys. Lett. 18, 355 (1992); H.J. Schulz. T.A.L. Ziman, and D. Poilblane: J. Phys. I 6, 675 (1996).ADSCrossRefGoogle Scholar
  92. 92.
    J. Richter: Phys. Rev. B 47, 5794 (1993).ADSCrossRefGoogle Scholar
  93. 93.
    J. Oitmaa and Zheng Weihong: Phys. Rev. B 54, 3022 (1996).ADSCrossRefGoogle Scholar
  94. 94.
    R.R.P. Singh, Zheng Weihong, C.J. Hamer, and J. Oitmaa: Phys. Rev. B 60, 7278 (1999).ADSCrossRefGoogle Scholar
  95. 95.
    V.N. Kotov and O.P. Sushkov: Phys. Rev. B 61, 11820 (2000).ADSCrossRefGoogle Scholar
  96. 96.
    L. Capriotti and S. Sorella: Phys. Rev. Lett. 84, 3173 (2000).ADSCrossRefGoogle Scholar
  97. 97.
    O. Kahn, Y. Pei, and Y. Jornauz. In: Inorganic Materials, edited by D.W. Bruce and D.O. O'Hare (John Wiley & Sons Ltd., New York, 1992).Google Scholar
  98. 98.
    N.B. Ivanov, J. Richter, and U. Schollwöck: Phys. Rev. B 58, 14456 (1998).ADSCrossRefGoogle Scholar
  99. 99.
    J. Richter, U. Schollwöck, and N.B. Ivanov: Physica B 281 & 282 845 (2000).ADSCrossRefGoogle Scholar
  100. 100.
    A. Moreo, E. Dagotto, T. Jolicoeur and J. Riera: Phys. Rev. B 42, 6283 (1990).ADSCrossRefGoogle Scholar
  101. 101.
    K. Kubo and T. Kishi: J. Phys. Soc. Jpn. 60, 567 (1991).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Damian J. J Farnell
    • 1
  • Raymond F. Bishop
    • 2
  1. 1.Unit of Ophthalmology, Department of Medicine University Clinical DepartmentsUniversity of LiverpoolLiverpoolUK
  2. 2.Department of PhysicsUniversity of Manchester Institute of Science and Technology (UMIST)ManchesterUK

Personalised recommendations