Skip to main content

Laboratory spectroscopy: The rotation-torsion spectrum of carbodiimide, HNCNH

  • Part II: The Chemistry of Interstellar Molecular Clouds
  • Conference paper
  • First Online:
The Physics and Chemistry of Interstellar Molecular Clouds: mm and Sub-mm Observations in Astrophysics

Part of the book series: Lecture Notes in Physics ((LNP,volume 331))

  • 149 Accesses

Abstract

The rotation-torsion spectrum of carbodiimide, HNCNH, a constituent of the vapour of the well-known interstellar molecule cyanamide, H2NCN, was measured in the region from 20 GHz to 330 cm−1 using a high resolution Fourier transform spectrometer, a laser single sideband spectrometer, a millimeter wave and a submillimeter wave spectrometer. The spectral pattern of a perpendicular band system of an almost perfect accidental symmetric top, expected for skew-chain molecules, was observed. The principal axis b is parallel to the C 2 symmetry axis of HNCNH. The molecular constants obtained by fitting the positions of the torsional doublet centers with Watson’s Hamiltionian in S-reduction are A=379244.493(27) MHz, B=10366.9389(18) MHz, and C=10366.0837(25) MHz which yield κ=−0.999995368(18). Small splittings of the observed rotational lines were found to be due to a torsional motion. Excerpts of the experimental data and the effective molecular constants of HNCNH relevant for radioastronomy are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Winnewisser, K. Möller and A. Gambi, The Microwave, Infrared and Ultraviolet Spectra of Diazirines: Interpretation and Physical Aspects in “The Chemistry of Diazirines” (M. T. H. Liu, Ed.), CRC Press, Boca Raton, 1987.

    Google Scholar 

  2. M. Bogey, M. Winnewisser and J. J. Christiansen, Can. J. Phys. 62, 1198–1216 (1984).

    ADS  Google Scholar 

  3. U. P. Verma, K. Möller, J. Vogt, M. Winnewisser and J. J. Christiansen, Can. J. Phys. 63, 1173–1183 (1985).

    ADS  Google Scholar 

  4. E. Schäfer and M. Winnewisser, J. Mol. Spectrosc. 97, 154–164 (1983).

    Article  ADS  Google Scholar 

  5. J. Vogt, M. Winnewisser, K. Yamada and G. Winnewisser, Chem. Phys., 83, 309–318 (1984).

    Article  Google Scholar 

  6. E. Schäfer and M. Winnewisser, Ber. Bunsenges. Phys. Chem. 86, 780–790 (1982).

    Google Scholar 

  7. P. Jensen and M. Winnewisser, Collect. Czech. Chem. Commun. 51, 1373–1381 (1986).

    Article  Google Scholar 

  8. M. Winnewisser and J. Reinstaedtler, J. Mol. Spectrosc. 120, 28–48 (1986).

    Article  ADS  Google Scholar 

  9. C. Thomson and C. Glidewell, J. Comput. Chem. 4, 1–8 (1983).

    Article  Google Scholar 

  10. T. L. Allen, J. D. Goddard and H. F. Schaefer III, J. Chem. Phys. 73, 3255–3263 (1980).

    Article  ADS  Google Scholar 

  11. B. E. Turner, A. G. Kislyakow, H. S. Liszt, and N. Kaifu, Astrophys. J. 201, L149–L152 (1975).

    Article  ADS  Google Scholar 

  12. H. E. Matthews and T.J. Sears, Astrophys. J. 300, 766–772 (1986).

    Article  ADS  Google Scholar 

  13. S.T. King and J.H. Strope, J. Chem. Phys. 54, 1289–1295, (1971).

    Article  ADS  Google Scholar 

  14. M. Birk and M. Winnewisser, Chem. Phys. Lett. 123, 382–385 (1986).

    Article  ADS  Google Scholar 

  15. M. Birk and M. Winnewisser, Chem. Phys. Lett. 123, 386–389 (1986).

    Article  ADS  Google Scholar 

  16. M. Birk, Dissertation Justus-Liebig-Universität Giessen (D26), D-6300 Giessen, Federal Republic of Germany.

    Google Scholar 

  17. M. Winnewisser and M. Birk, J. Chem. Soc., Faraday Trans. 2, 84, 1341–1363 (1988).

    Google Scholar 

  18. M. T. Nguyen, N. V. Riggs, L. Radom, M. Winnewisser, B. P. Winnewisser and M. Birk, Chem. Phys. 122, 305–315 (1988).

    Article  Google Scholar 

  19. M. Birk, M. Winnewisser and E. A. Cohen, J. Mol. Spectrosc., in press (1989).

    Google Scholar 

  20. J. K. G. Watson, J. Chem. Phys. 46, 1935–1949 (1967).

    Article  ADS  Google Scholar 

  21. J. K. G. Watson, J. Chem. Phys. 48, 4517–4524 (1968).

    Article  ADS  Google Scholar 

  22. W. Gordy and R. L. Cook, Microwave Molecular Spectra in “Techniques of Chemistry” (A. Weissberger, Ed.), John Wiley & Sons, New York, Vol. XVIII, 1984.

    Google Scholar 

  23. P. Helminger, W. C. Bowman and F. C. DeLucia, J. Mol. Spectrosc. 85, 120–130 (1981).

    Article  ADS  Google Scholar 

  24. G. M. Plummer, G. Winnewisser, M. Winnewisser J. Hahn and K. Reinartz, J. Mol. Spectrosc. 122, 255–269 (1987).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Winnewisser, M. (1989). Laboratory spectroscopy: The rotation-torsion spectrum of carbodiimide, HNCNH. In: The Physics and Chemistry of Interstellar Molecular Clouds: mm and Sub-mm Observations in Astrophysics. Lecture Notes in Physics, vol 331. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0119508

Download citation

  • DOI: https://doi.org/10.1007/BFb0119508

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51297-4

  • Online ISBN: 978-3-540-46187-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics