Advertisement

Exzitonen-Lumineszenz in Halbleitern

Chapter
Part of the Advances in Solid State Physics book series (ASSP, volume 5)

Abstract

The annihilation of excitons in semiconducting solids causes a spectrum of many sharp emission lines in the wavelength region close beyond the absorption edge. Three main types of spectra can be distinguished: firstly a series of lines arising from hydrogenlike energy states of the free exciton, thus converging to the energy of the band gap; secondly several very sharp lines with a smaller energy than that of the n=1 line of the free exciton, which can apparently be correlated to certain impurities or other lattice defects; thirdly groups of phonon satellites, spaced from the zero-phonon-lines by one or several times the energy of optical or acoustical phonons.

During the last few years spectra of exciton emission have been observed for almost all prominent semiconductors. Comparing experimental results with theoretical considerations a great deal of information could be collected on the band structure of the solids, the quantum chemistry of bound exciton complexes, and the interaction of phonons with excitons. For the understanding of dynamical properties, such as exciton lifetime, transport effects, exciton-phonon coupling etc., the study of exciton emission spectra, rather than absorption spectra is more favourable. This has been demonstrated for example by investigating the temperature dependence of the energetic position of exciton emission, the vibrational spectra of bound exciton complexes, the decay time of exciton emission, and the energy transport via excitons.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    J. Frenkel, Phys. Rev. 37, 17 und 1276 (1931).CrossRefADSzbMATHGoogle Scholar
  2. [2]
    R. E. Peierls, Ann. Phys. (5) Lpz. 13, 905 (1932).CrossRefzbMATHGoogle Scholar
  3. [3]
    G. H. Wannier, Phys. Rev. 52, 191 (1937).CrossRefADSzbMATHGoogle Scholar
  4. [4]
    H. Haken, Halbleiterprobleme Bd. IV (Vieweg, Braunschweig), 1 (1958).Google Scholar
  5. [5]
    R. S. Knox, Theory of Excitons, Solid State Physics, Suppl. 5, Academic Press, N. Y. 1963.Google Scholar
  6. [6]
    z. B. H. Haken und W. Schottky, Z. Phys. Chem 16, 218 (1958).Google Scholar
  7. [7]
    F. A. Kröger, Physica 7, 1 (1940).CrossRefADSGoogle Scholar
  8. [8]
    J. Ewles, Proc. Roy. Soc. London A 167, 34 (1938).ADSCrossRefGoogle Scholar
  9. [9]
    E. F. Gross und N. A. Karryev, C. R. Acad. Sci. USSR 84, 261 und 471 (1952).Google Scholar
  10. [10]
    S. Nikitine, G. Perny und M. Sieskind, J. Phys. Radium 15, 18 (1954).CrossRefGoogle Scholar
  11. [11]
    E. Grillot et al., Compt. Rend. 242, 1794 (1956).Google Scholar
  12. [12]
    E. F. Gross et al., J. Techn Phys. USSR 26, 697 (1956); 27, 1149 (1957).Google Scholar
  13. [13]
    D. C. Reynolds und L. S. Pedrotti, Phys. Rev. 119, 1897; 120, 1664 (1960).CrossRefADSGoogle Scholar
  14. [14]
    J. R. Haynes, Phys. Rev. Let. 4, 361 (1960).CrossRefADSGoogle Scholar
  15. [15]
    D. G. Thomas und J. J. Hopfield, Phys. Rev. 116, 573 (1959); 122, 35 (1961).CrossRefADSGoogle Scholar
  16. [16]
    W. Klein, J. Phys. Chem. Solids 26, 1517 (1965).CrossRefADSGoogle Scholar
  17. [17]
    R. Braunstein und N. Ockman, Phys. Rev. 134, A 499 (1964).CrossRefADSGoogle Scholar
  18. [18]
    D. G. Thomas und J. J. Hopfield, Phys. Rev. 128, 2135 (1962).CrossRefADSGoogle Scholar
  19. [19]
    R. Rass, Diss. FU Berlin (1964) D 188.Google Scholar
  20. [20]
    W. J. Choyke, D. R. Hamilton und L. Patrick, Phys. Rev. 133, A 1163 (1964).CrossRefADSGoogle Scholar
  21. [21]
    W. J. Choyke, D. R. Hamilton und L. Patrick, Phys. Rev. 131, 127; 132, 2023 (1963).CrossRefADSGoogle Scholar
  22. [22]
    P. J. Dean und I. H. Jones, Phys. Rev. 133, A 1698 (1964).CrossRefADSGoogle Scholar
  23. [23]
    W. J. Turner, W. E. Reese und G. D. Pettit, Phys. Rev. 136, A 1467 (1964); A. T. Vink und C. Z. van Doorn, Phys. Let. 1, 332 (1962); D. G. Thomas, M. Gershenzon und J. J. Hopfield, Phys. Rev. 131, 2397 (1963); E. J. Johnson, I. Filinski und H. Y. Fan, Proc. Int. Conf. Phys. Semicond. Exeter, 375 (1962).CrossRefADSGoogle Scholar
  24. [24]
    M. I. Nathan und G. Burns, Phys. Rev. 129, 125 (1963).CrossRefADSGoogle Scholar
  25. [25]
    S. Nikitine, J. Ringeissen und Ch. Sennet, Int. Conf. Semicond. Paris, 279 (1965), Symp. Radiative Recombination.Google Scholar
  26. [26]
    R. E. Dietz, D. G. Thomas und J. J. Hopfield, Phys. Rev. Let. 8, 391 (1962).CrossRefADSGoogle Scholar
  27. [27]
    A. Lempicki, Proc. Phys. Soc. 74, 138 (1959).CrossRefADSGoogle Scholar
  28. [28]
    J. L. Birman, Phys. Rev. Let. 2, 157 (1959).CrossRefADSGoogle Scholar
  29. [29]
    I. Broser, R. Rass et al., J. Phys. Chem. Sol. 22, 213 (1961).CrossRefADSGoogle Scholar
  30. [30]
    E. F. Gross, B. S. Razbirin und S. A. Permogorov, Sov. Phys. Dokl. 7, 1011 (1963); E. F. Gross, Fiz. Tverd. Tela 3, 1899 (1961).ADSGoogle Scholar
  31. [31]
    I. Broser, P. Brumm und C. Reuber, Z. Phys. 179, 367 (1964).CrossRefADSGoogle Scholar
  32. [32]
    J. R. Haynes, M. Lax und W. F. Flood, Proc. Int. Conf. Semicond. Prag, 423 (1961).Google Scholar
  33. [33]
    J. R. Haynes und N. G. Nilsson, Int. Conf. Semicond. Paris, (1965), Symp. Radiative Recombination.Google Scholar
  34. [34]
    M. Balkanski, Proc. Int. Conf. Semicond. Paris, 1025 (1965).Google Scholar
  35. [35]
    W. A. Anders, Thesis, Wright Patterson AFB (1962); B. A. Kulp, R. M. Detweiler und W. A. Anders, Phys. Rev. 131, 2036 (1963); R. E. Halsted, M. Aven und H. D. Coghill, Amer. Phys. Soc. Bull. 8, 442 (1963); C. E. Bleil und I. Broser, Proc. Int. Conf. Semicond. Paris, 897 (1965).Google Scholar
  36. [36]
    H. Y. Fan, Phys. Rev. 82, 900 (1951).CrossRefADSzbMATHGoogle Scholar
  37. [37]
    R. Marshall und S. S. Mitra, Phys. Rev. 134 A, 1019 (1964).CrossRefADSGoogle Scholar
  38. [38]
    M. A. Lampert, Phys. Rev. Let. 1, 450 (1958).CrossRefADSGoogle Scholar
  39. [39]
    W. Kohn, Fußnote 7 in Zitat 14..CrossRefGoogle Scholar
  40. [40]
    E. Teller, Z. Phys. 61, 458 (1930).CrossRefADSGoogle Scholar
  41. [41]
    R. E. Halsted, M. R. Lorenz und B. Segall, J. Phys. Chem. Sol. 22, 109 (1961).CrossRefADSGoogle Scholar
  42. [42]
    R. E. Halsted, M. Aven und H. P. Coghill, J. Electrochem. Soc. 112, 177 (1965).CrossRefGoogle Scholar
  43. [43]
    R. E. Halsted und M. Aven, Phys. Rev. Let. 14, 64 (1965).CrossRefADSGoogle Scholar
  44. [44]
    D. G. Thomas und J. J. Hopfield, Phys. Rev. Let. 7, 316 (1961).CrossRefADSGoogle Scholar
  45. [45]
    D. C. Reynolds und C. W. Litton, Phys. Rev. 132, 1023 (1963).CrossRefADSGoogle Scholar
  46. [46]
    J. Yafet und D. G. Thomas, Phys. Rev. 131, 2405 (1963).CrossRefADSGoogle Scholar
  47. [47]
    D. C. Reynolds, C. W. Litton, R. G. Wheeler und T. C. Collins, Proc. Int. Conf. Semicond. Paris, 739 (1965).Google Scholar
  48. [48]
    J. J. Hopfield, Proc. Int. Conf. Semicond. Exeter, 75 (1962).Google Scholar
  49. [49]
    E. F. Gross, S. A. Permogorov und B. S. Razbirin, Sov. Phys. Dokl. 9, 164 (1964).ADSGoogle Scholar
  50. [50]
    E. D. Trifonov, Dokl. Acad. Nauk. 147, 826 (1962).Google Scholar
  51. [51]
    N. G. Basov und O. V. Bogdankevich, Int. Conf. Semicond. Press, 225, 1965. Symp. Radiative Recombination.Google Scholar
  52. [52]
    Y. Toyozawa, Suppl. Progr. theoret. Phys. 12, 111 (1959).CrossRefADSGoogle Scholar
  53. [53]
    R. J. Collins, J. appl. Phys. 30, 1135 (1959).CrossRefADSGoogle Scholar
  54. [54]
    C. E. Bleil und I. Broser, J. Phys. Chem. Sol. 25, 11 (1964).CrossRefADSGoogle Scholar
  55. [55]
    M. Balkanski und I. Broser, Z. Elektrochemie 61, 715 (1957); I. Broser und R. Broser-Warminsky, J. Phys. Chem. Sol. 8, 177, 1959; J. W. Allen, Proc. Int. Conf. Semicond. Prag, 435 (1961).Google Scholar
  56. [56]
    J. Mort und W. E. Spear, Proc. phys. Soc. London 81, 130 (1965).Google Scholar
  57. [57]
    C. C. Klick, J. opt. Soc. Amer. 41, 816 (1951).ADSCrossRefGoogle Scholar
  58. [58]
    L. R. Furlong und C. F. Ravillious, Phys. Rev. 98, 954 (1955).CrossRefADSGoogle Scholar
  59. [59]
    E. Grillot, J. Phys. Rad. 17, 822 (1956).CrossRefGoogle Scholar
  60. [60]
    E. E. Gross und M. A. Yakobson, Sov. Phys. Techn. Phys. 1, 1340 (1956).Google Scholar
  61. [61]
    E. F. Gross und V. V. Sobolov, Sov. Phys. Dokl. 5, 735 (1961).ADSGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Braunschweig 1966

Authors and Affiliations

  1. 1.Technische Universität und Institut für Elektronenmikroskopie am Fritz-Haber-Institut der Max-Planck-GesellschaftBerlin

Personalised recommendations