Advertisement

Transporterscheinungen in InSb

Chapter
  • 46 Downloads
Part of the Advances in Solid State Physics book series (ASSP, volume 5)

Abstract

If a semiconductor has a spherical parabolic or nonparabolic conduction band, it is possible to use magnetoresistance and Ettingshausen-Nernst data in order to get information about the dependence of the electron mobility upon electron energy. The measured values of all galvanomagnetic and thermomagnetic effects of InSb above room temperature indicate consistently that the electrons are mainly scattered on optical lattice vibrations. Besides magnetoresistance in the intrinsic range shows, that 1–3% of the holes are fast holes which exhibit a mobility similar to the electron mobility.

For the eutectic system InSb−NiSb all galvanomagnetic and thermomagnetic coefficients can be calculated, if one assumes that the included strands possess infinite electrical conductivity. One obtains 60% of the theoretical values of magnetoresistance and Ettingshausen-Nernst coefficient experimentally.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    O. E. Kane, J. Phys. Chem. Solids 1, 249 (1957).CrossRefADSGoogle Scholar
  2. [2]
    H. Ehrenreich, J. Phys. Chem. Solids 2, 131 (1957).CrossRefADSGoogle Scholar
  3. [3]
    J. Kolodziejczak, Proceedings of the International Conference on Semiconductor Physics Prague 1960, S. 950, Acta Phys. Polon. 22, 289 (1961).Google Scholar
  4. [4]
    H. Wagini, Z. f. Naturforschung 19a, 1527 (1964).ADSGoogle Scholar
  5. [5]
    H. Ehrenreich, J. Chem. Phys. Solids 9, 129 (1959).CrossRefADSGoogle Scholar
  6. [6]
    W. C. Spitzer und H. Y. Fan, Phys. Rev. 99, 1893 (1955).CrossRefADSGoogle Scholar
  7. [7]
    H. Ehrenreich, J. Appl. Phys. 32, Suppl. 2155 (1961).Google Scholar
  8. [8]
    J. Kolodziejczak und L. Soshowski, Acta Phys. Polon. 21, 399 (1962).Google Scholar
  9. [9]
    T. C. Harmann und J. M. Honig, J. Phys. Chem. Solids 23, 913 (1962).CrossRefADSGoogle Scholar
  10. [10]
    R. F. Potter, Phys. Rev. 103, 861 (1956).CrossRefADSGoogle Scholar
  11. [11]
    D. Long, Phys. Rev. 99, 388 (1955).CrossRefADSGoogle Scholar
  12. [12]
    V. Roberts und J. E. Quarrington, J. Electron. 1, 152 (1955).CrossRefGoogle Scholar
  13. [13]
    F. Oswald, Z. Naturforschung 10a, 927 (1955).ADSGoogle Scholar
  14. [14]
    H. Rupprecht, R. Weber und H. Weiß, Z. f. Naturforschung 15a, 783 (1960).ADSGoogle Scholar
  15. [15]
    H. Hieronymus und H. Weiß, Solid-State Electronics 5, 71 (1962).CrossRefADSGoogle Scholar
  16. [16]
    H. Weiß, J. Appl. Phys. 32, 2064 (1961).CrossRefADSGoogle Scholar
  17. [17]
    H. Wagini, Z. f. Naturforschung 19a, 1541 (1964).ADSGoogle Scholar
  18. [18]
    R. K. Willardson und J. J. Duga, Proc. Phys. Soc. 75, 280 (1960).CrossRefADSGoogle Scholar
  19. [19]
    V. P. Zhuse und I. M. Tsidilkovskij, Soviet. Phys. Tech. Phys. 3, 2117 (1958).Google Scholar
  20. [20]
    O. V. Emelyanenko, F. P. Kesamaly und D. N. Nasledov, Soviet Phys. Solid State 4, 397 (1962).Google Scholar
  21. [21]
    C. Hilsum und R. Barrie, Proc. Phys. Soc. 71, 676 (1958).CrossRefADSGoogle Scholar
  22. [22]
    H. Schönwald, Z. f. Naturforschung 19a, 1276 (1964).ADSGoogle Scholar
  23. [23]
    D. J. Howarth, R. H. Jones und E. H. Putley, Proc. Phys. Soc. 70B, 124 (1957).ADSGoogle Scholar
  24. [24]
    M. Tanenbaum und J. P. Maita, Phys. Rev. 91, 1009 (1953).CrossRefADSGoogle Scholar
  25. [25]
    J. Kolodziejczak und R. Kowalczyk, Acta Phys. Polon. 21, 389 (1962).Google Scholar
  26. [26]
    A. Müller und M. Wilhelm, Z. f. Naturforschung 19a, 254 (1964).ADSGoogle Scholar
  27. [27]
    R. T. Bate, R. K. Willardson und A. C. Beer, J. Phys. Chem. Solids 9, 119 (1959).CrossRefADSGoogle Scholar
  28. [28]
    R. J. Sladek, J. Phys. Chem. Solids 16, 1 (1960).CrossRefADSGoogle Scholar
  29. [29]
    R. J. Sladek, J. Phys. Chem. Solids 8, 515 (1958).CrossRefADSGoogle Scholar
  30. [30]
    E. H. Putley, Proc. Phys. Soc. 73, 280 (1959).CrossRefADSGoogle Scholar
  31. [31]
    Y. Yafet, R. W. Keyes und E. N. Adams, J. Phys. Chem. Solids 1, 137 (1956).CrossRefADSGoogle Scholar
  32. [32]
    R. J. Sladek, J. Phys. Chem. Solids 5, 157 (1958).CrossRefADSGoogle Scholar
  33. [33]
    H. P. R. Frederikse und W. R. Hosler, Phys. Rev. 108, 1136 (1957).CrossRefADSGoogle Scholar
  34. [34]
    F. R. Kessler und H. J. Metzger, Phys. Kondens. Materie 1, 263 (1963).CrossRefADSGoogle Scholar
  35. [35]
    H. Weiß, Isvestija Akad. Nauk. SSSR 23, 969 (1964).Google Scholar
  36. [36]
    H. Weiß und M. Wilhelm, Z. f. Physik 176, 399 (1963).CrossRefADSGoogle Scholar
  37. [37]
    B. Paul, H. Weiß und M. Wilhelm, Solid-State Electronics 7, 835 (1964).CrossRefADSGoogle Scholar
  38. [38]
    H. Wagini und H. Weiß, Solid-State Electronics 8, 241 (1965).CrossRefADSGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Braunschweig 1966

Authors and Affiliations

  1. 1.Forschungslaboratorium der Siemens-Schuckertwerke AGErlangen

Personalised recommendations