Stand der Entwicklung und der Anwendung von Transistoren

Part of the Advances in Solid State Physics book series (ASSP, volume HP4)


The present status of transistor development is illustrated by means of a schematic representation. The junction transistor with cut off frequencies between 1 and 10 mc/s, and in particular the alloyed transistor, today everywhere holds the field; higher frequencies up to 500 mc/s are attained with variants of the junction transistor such as the surface-barrier, the tetrode, the pnip, and the diffused transistor. The performance of the transistor is illustrated by means of a table in which some major characteristics of the transistor are compared with those of the electron tube. The following characteristics are here covered: gain, cut off frequency, noise, power, temperature dependence, reliability, shock resistance, readiness for service, size. The present range of applications is shown to extend from common electrical utilities such as hearing aids and radio receivers to new communication equipments such as measuring sets, signal generators, pilot and v-f dialing receivers, companders, as well as to complementary amplifiers, pulse amplifiers, multivibrators and small-size transmitters. The transistor is thus seen to be making headway not only in the proper communications sector, but also in the broad sectors of commercial and industrial electronics.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. A. Morton, Present Status of Transistor Development. Proc. Inst. Radio Engrs. 40, 1314–1326 (1952).Google Scholar
  2. [2]
    W. Heywang, H. Henker, Physik und Technologie von Richtleitern und Transistoren. Z. Elektrochem. Ber. Bunsenges. Phys. Chem. 58, 283–321 (1954).Google Scholar
  3. [3]
    W. Shockley, The Forty-Sixth Kelvin Lecture. Proc. Instn. electr. Engrs. B-103, 23–41 (1956).Google Scholar
  4. [4]
    D. B. Kret, A Report on the State of the Art of Semiconductor Devices. Proceedings Electronic Component Symposium, 135–138 (1956).Google Scholar
  5. [5]
    H. Weiss, H. Welker: Zur transversalen magnetischen Widerstandsänderung von InSb. Z. Phys. 138, 322–329 (1954).CrossRefADSGoogle Scholar
  6. [6]
    F. Kuhrt: Eigenschaften der Hallgeneratoren. Siemens-Z. 28, 370–376 (1954).Google Scholar
  7. [7]
    W. Hartel: Anwendung der Hallgeneratoren. Siemens-Z. 28, 376–384 (1954).Google Scholar
  8. [8]
    R. Gremmelmaier, H. Welker: Nachweis von Neutronen mit einem Indiumphosphid-p-n-Element. Z. Naturforsch. 11a, 420–422 (1956).ADSGoogle Scholar
  9. [9]
    W. Schultz: Der Einfluß von Oberflächen auf die elektrischen Eigenschaften von Gleichrichtern und Transistoren. Nachrichtentechn. Fachber. 5, 3–9 (1956).Google Scholar
  10. [10]
    H.-L. Rath: Welche Möglichkeiten bieten Scheinwiderstandsmessungen an Sperrschichten. Nachrichtentechn. Fachber. 5, 15–26 (1956).Google Scholar
  11. [11]
    H. Becherer: Versuchsergebnisse über die Herstellung einer idealen Sperrcharakteristik bei Flächendioden. Nachrichtentechn. Fachber. 5, 10–14 (1956).Google Scholar
  12. [12]
    L. B. Valdes: The Frequency Response of Bipolar Transistors with Drift Fields. Proc. Inst. Radio Engrs. 44, 178–184 (1956).Google Scholar
  13. [13]
    J. H. Forster, L. E. Hiller, The Effect of surface Treatments on Point-Contact Transistor Characteristics. Bell Syst. techn. J. 35, 767–811 (1956).Google Scholar
  14. [14]
    A. Uhlir, jr.: Point-Contact Transistor Action. Bell. Lab.-Rec. 34, 325–328 (1956).Google Scholar
  15. [15]
    J. M. Early: Design Theory of Junction Transistors. Bell. Syst. Techn. J. 32, 1271–1312 (1953).Google Scholar
  16. [16]
    L. D. Armstrong, C. L. Carlson, M. Bentivegna: pnp-Transistors Using High-Emitter Efficiency Alloy Materials. Transistors I. RCA Lab. Princeton N. Y. 1956, 144–152.Google Scholar
  17. [17]
    H. Nelson: A Silicon npn-Junction Transistor by the Alloy Process. Transistors I. RCA Lab. Princeton N. Y. 1956, 172–181.Google Scholar
  18. [18]
    J. J. Ebers: Alloyed Junction Transistor Development. Bell. Lab.-Rec. 34, 8–12 (1956).Google Scholar
  19. [19]
    A. D. Rittmann, T. J. Liles, High-Frequency Silicon Alloy Transistor. Trans. Inst. Radio Engrs. ED-3, 78–82 April (1956).Google Scholar
  20. [20]
    D. A. Jenny: A Germanium npn-Junction Transistor. Proc. Inst. Radio Engrs. 41, 1728–173 (1953).Google Scholar
  21. [21]
    W. E. Bradley: Principles of the Surface-Barrier Transistor. Proc. Inst. Radio Engrs. 41, 1702–1706 (1953).Google Scholar
  22. [22]
    W. E. Bradley: Silicon Surface-Barrier Transistor. Proc. Inst. Radio Engrs. 42, 486 (1954).Google Scholar
  23. [23]
    D. W. Baker: High Frequency Germanium npn-Tetrode Conv. Rec. Inst. Radio Engrs. 3, Part 3, 143–150 (1956).Google Scholar
  24. [24]
    R. D. Middlebrook: An Introduction to Junction Transistor Theory. New York, John Wiley & Sons, Inc., insbesondere S. 252 Gl (13.145).Google Scholar
  25. [25]
    R. L. Wallace, jr., L. G. Schimpf and E. Dickton: A Junction Transistor Tetrode for High Frequency Use. Proc. Inst. Radio Engrs. 40, 1395–1400 (1952).Google Scholar
  26. [26]
    J. M. Early: pnip-and npin-Junction Transistor Triodes. Bell Syst. techn. J. 33, 517–533 (1954).Google Scholar
  27. [27]
    W. T. Read, jr.: Theory of the Swept Intrinsic Structure. Bell. Syst. techn. J. 35, 1239–1284 (1956).Google Scholar
  28. [26]
    l. c., vergl. Zitat S. 196.Google Scholar
  29. [28]
    M. Tanenbaum, J. R. Thomas: Diffused Emitter and Base Silicon Transistors. Bell. Syst. techn. J. 35, 1–22 (1956).Google Scholar
  30. [29]
    C. A. Lee: A High-Frequency Diffused Base Germanium Transistor. Bell Syst. techn. J. 35, 23–24 (1956).Google Scholar
  31. [30]
    W. Guggenbühl, M. J. O. Strutt: Experimentelle Untersuchung und Trennung der Rauschursachen in Flächentransistoren. Arch. elektr. Übertrag. 9, 259–269 (1955).Google Scholar
  32. [31]
    C. S. Fuller, J. A. Ditzenberger: Diffusion of Donor and Acceptor Elements in Silicon. J. Appl. Phys. 27, 544–553 (1956).CrossRefADSGoogle Scholar
  33. [32]
    R. H. Kingston: Review of Ge Surface Phenomena. J. appl. Phys. 27, 101–114 (1956).CrossRefADSGoogle Scholar
  34. [33]
    W. H. Brattain, C. G. B. Garrett: Combined Measurements of Field Effect, Surface Photo-Voltage and Photoconductivity. Bell Syst. techn. J. 35, 1019–1040 (1956).Google Scholar
  35. [34]
    C. G. B. Garrett, W. H. Brattain: Distribution and Cross-Sections of Fast States on Ge Surfaces. Bell Syst. techn. J. 35, 1041–1058 (1956).Google Scholar
  36. [35]
    R. H. Kingston, L. McWhorter: Relaxation Time of Surface States on Ge. Phys. Rev. 103, 534–540 (1956).CrossRefADSGoogle Scholar
  37. [36]
    S. R. Morrison: Slow Surface Reaction on Ge. Phys. Rev. 102, 1297–1301 (1956).CrossRefADSGoogle Scholar
  38. [37]
    H. Statz, G. de Mars, L. Davis, jr., A. Adams, jr.: Surface States on Silicon and Germanium Surfaces. Phys. Rev. 106, 455–464 (1957).CrossRefADSGoogle Scholar
  39. [38]
    J. Vith: Transistoren-Schaltungstechnik in Niederfrequenzverstärkern. Elektrotechn. Z. A-75, 591–594 (1954).Google Scholar
  40. [39]
    C. Starke: Der Transistor als Verstärkerelement für Hörhilfen. Frequenz 9, 1–15 (1955).Google Scholar
  41. [40]
    E. W. Herold: New Advances in the Junction Transistor. Bd. I, S. 377–378, dieser Reihe.Google Scholar
  42. [41]
    E. W. Herold: New Advances in the Junction Transitor. Brit. J. appl. Physics, 5, 115–126 (1954).CrossRefADSGoogle Scholar
  43. [42]
    A. F. Eilken: Transistor-Kanalverstärker für Trägerfrequenz-Telephonieanlagen. Elektrotechn. Z. B 8, 332 (1956).Google Scholar
  44. [43]
    B. Rall: Die Anwendung des Flächentransistors in Zählschaltungen. Nachrichtentechn. Fachber. 5, 50–56 (1956).Google Scholar

Copyright information

© Friedr. Vieweg & Sohn 1957

Authors and Affiliations

  1. 1.Zentral-Laboratoriums. Zt. Siemens & Halske A.G.München

Personalised recommendations