Advertisement

Reaction of some transition metals with nucleic acids and their constituents

  • U. Weser
Conference paper
Part of the Structure and Bonding book series (STRUCTURE, volume 5)

Keywords

Electron Spin Resonance Metal Complex Stability Constant Nuclear Magnetic Resonance Spectroscopy Intermediate Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albert, A.: Stability constants of metals with complexing substances. Biochemist’s Handbook, p. 95. Ed. by C. Long, E. & F. N. Spon Ltd. 1961.Google Scholar
  2. 2.
    —, and E. P. Serjeant: Quantitative studies of the activity of naturally occurring substances for trace metals. Biochem. J. 76, 621 (1960).Google Scholar
  3. 3.
    Bamann, E., H. Trapmann u. F. Fischler: Verhalten und Spezifität von Cer und Lanthan als Phosphatase Modelle gegenüber Nucleinsäuren und Mononucleotiden. Biochem. Z. 326, 89 (1954).Google Scholar
  4. 4.
    Bjerrum, J.: Metal amine formation in aqueous solutions. Copenhagen: Haase and Sons 1941.Google Scholar
  5. 5.
    Brintzinger, H.: Zur Struktur der ATP-Komplexe zweiwertiger Kationen Hydratisierung des Zentralions. Helv. Chim. Acta 44, 935 (1961).CrossRefGoogle Scholar
  6. 6.
    —: The structure of adenosinetriphosphate-metal ion complexes in aqueous solution. Biochim. Biophys. Acta 77, 343 (1963).CrossRefGoogle Scholar
  7. 7.
    —: IR spectra of ATP complexes in aqueous solution. J. Am. Chem. Soc. 87, 1805 (1965).CrossRefGoogle Scholar
  8. 8.
    Bryan, S. E., and E. Frieden: Interaction of Cu(II) with DNA below 30°C. Biochemistry 6, 2728 (1967).CrossRefGoogle Scholar
  9. 9.
    Bryce, G. F., and F. R. N. Gurd: Visible spectra and optical rotary properties of cupric ion complexes of L-histidine-containing peptides. J. Biol. Chem. 241, 122 (1966).Google Scholar
  10. 10.
    —, R. W. Roeske, and F. R. N. Gurd: Optical rotary properties of cupric ion complexes of simple dipeptides. J. Biol. Chem. 240, 3837 (1965).Google Scholar
  11. 11.
    Bullock, F. J., and O. Jardetzky: Proton magnetic resonance studies of purines and pyrimidine derivatives (XII) assignment of peaks in purine derivatives. J. Org. Chem. 29, 1988 (1964).CrossRefGoogle Scholar
  12. 12.
    Butzow, J. J., and G. L. Eichhorn: Interactions of metal ions with polynucleotides and related compounds. IV Degradation of polyribonucleotides by zinc and other divalent metal ions. Biopolymers 3, 97 (1965).CrossRefGoogle Scholar
  13. 13.
    Calhoun, B. A., J. Overmeyer, and W. Sunderman Jr.: Studies of trace metal metabolism: Electron paramagnetic resonance of manganese in ribonucleic acids. Proc. Soc. Exptl. Biol. Med. 119, 1089 (1965).Google Scholar
  14. 14.
    Coates, J. H., D. O. Gordon, and V. K. Srivastava: The binding of Cu(II) ions to DNA. Biochem. Biophys. Res. Commun. 20, 611 (1965).CrossRefGoogle Scholar
  15. 15.
    Cohn, M., and J. Townsend: A study of manganous complexes by paramagnetic resonance absorption. Nature 173, 1090 (1954).CrossRefGoogle Scholar
  16. 16.
    —, and T. R. Hughes Jr.: Phosphorus magnetic resonance spectra of adenosine-di-and triphosphate. J. Biol. Chem. 235, 3250 (1960).Google Scholar
  17. 17.
    —: Nuclear magnetic resonance spectra of adenosine di-and triphosphate. J. Biol. Chem. 237, 176 (1962).Google Scholar
  18. 18.
    Czerlinski, G. u. M. Eigen: Eine Temperatursprungmethode zur Untersuchung chemischer Relaxation. Z. Elektrochem. 63, 652 (1959).Google Scholar
  19. 19.
    Daune, M., C. A. Decker, and H. K. Schachman: Complexes of Ag+ with natural and synthetic polynucleotides. Biopolymers 4, 51 (1966).CrossRefGoogle Scholar
  20. 20.
    Diebler, H., M. Eigen u. G. G. Hammes: Relaxations-spektrometrische Untersuchungen schneller Reaktionen von ATP in wäßriger Lösung. Z. Naturforsch. 15 B, 554 (1960).Google Scholar
  21. 21.
    Dove, W. F., and N. Davidson: Cation effects on the denaturation of DNA. J. Mol. Biol. 5, 467 (1962).Google Scholar
  22. 22.
    Eichhorn, G. L.: Metal ions as stabilizers or destabilizers of the DNA structure. Nature 194, 474 (1962).CrossRefGoogle Scholar
  23. 23.
    —, and J. J. Butzow: Interactions of metal ions with polynucleotides and related compounds. III Degradation of polyribonucleotides by La ions. Biopolymers 3, 79 (1965).CrossRefGoogle Scholar
  24. 24.
    —, and P. Clark: Interactions of metal ions with polynucleotides and related compounds V. The unwinding and rewinding of DNA strands under the influence of Cu(II) ions. Proc. Natl. Acad. Sci. U. S. 53, 586 (1965).CrossRefGoogle Scholar
  25. 25.
    —: The reaction of mercury(II) with nucleosides. J. Am. Chem. Soc. 85, 4020 (1963).CrossRefGoogle Scholar
  26. 26.
    —, and E. D. Becker: Interactions of metal ions with polynucleotides and related compounds. VII The binding of Cu(II) to nucleosides, nucleotides and DNA. Biochemistry 5, 245 (1966).CrossRefGoogle Scholar
  27. 27.
    Felsenfeld, G., and S. Z. Hirschman: A neighbor interaction analysis of the hyperchromism and spectra of DNA. J. Mol. Biol. 13, 407 (1965).Google Scholar
  28. 28.
    —, and S. Huang: The interaction of polynucleotides with cations. Biochim. Biophys. Acta 34, 234 (1959).CrossRefGoogle Scholar
  29. 29.
    —, and A. Rich: Studies on the formation of two and three stranded polyribonucleotides. Biochim. Biophys. Acta 26, 457 (1957).CrossRefGoogle Scholar
  30. 30.
    —, and G. Sandeen: Dispersion of the hyperchromic effect in thermally induced transitions of nucleic acids. J. Mol. Biol. 5, 587 (1962).Google Scholar
  31. 31.
    Fiskin, A. M., and M. Beer: Determination of the base sequence in nucleic acids with the electron microscope. IV Nucleoside complexes with certain metal ions. Biochemistry 4, 1289 (1965).CrossRefGoogle Scholar
  32. 32.
    Frieden, E., and J. Alles: Subtle interactions of Cu2+ ions with nucleic acid and components. J. Biol. Chem. 230, 797 (1958).Google Scholar
  33. 33.
    Fujioka, M., and I. Lieberman: Zinc requirement for synthesis of DNA by rat liver. J. Biol. Chem. 239, 1164 (1964).Google Scholar
  34. 34.
    Gaucher, C. R., and J. F. Taylor: Compounds of ferric iron with ATP and other nucleoside phosphates. J. Biol. Chem. 239, 2251 (1964).Google Scholar
  35. 35.
    Gurd, F. R. N., and G. F. Bryce: Interaction of cupric ion with histidine peptides and myoglobin. The biochemistry of copper, p. 115. Ed. by J. Peisach, P. Aisen, W. E. Blumberg. New York: Academic Press 1966.Google Scholar
  36. 36.
    Harkins, T. R., and H. Freiser: Adenine-metal complexes. J. Amer. Chem. Soc. 80, 1132 (1958).CrossRefGoogle Scholar
  37. 37.
    Hartman, K. A., Jr.: The infrared spectra of some complexes of metal ions with nucleosides and nucleotides. Biochim. Biophys. Acta 138, 192 (1967).Google Scholar
  38. 38.
    Haugland, R. P., L. Stryer, T. R. Stengle, and J. C. Baldeschwieler: NMR studies of antibody-hapten interactions using a chloride ion probe. Biochemistry 6, 498 (1967).CrossRefGoogle Scholar
  39. 39.
    Hiai, S.: Effects of Cu2+ on thermal denaturation of nucleic acids. J. Mol. Biol. 11, 672 (1965).Google Scholar
  40. 40.
    Ingram, D. J. E.: Paramagnetic resonance in biological materials. Proc. First Intern. Conf. Paramagnetic Resonance 2, 809 (1963).Google Scholar
  41. 41.
    Izatt, R. M., L. D. Hansen, J. H. Rytting, and J. J. Christensen: Proton ionization from adenosine. J. Am. Chem. Soc. 87, 2760 (1965).CrossRefGoogle Scholar
  42. 42.
    Jardetzky, O., and C. D. Jardetzky: Introduction to magnetic resonance spectroscopy; methods and biochemical applications. Methods Biochem. Analy. 9, 235 (1962).CrossRefGoogle Scholar
  43. 43.
    Jensen, R. H., and N. Davidson: Spectrophotometric, potentiometric, and density gradient ultracentrifugation studies of the binding of silver ion by DNA. Biopolymers 4, 17 (1966).CrossRefGoogle Scholar
  44. 44.
    Katz, S.: The reversible reaction of sodium thymonucleate and mercuric chloride. J. Am. Chem. Soc. 74, 2238 (1952).CrossRefGoogle Scholar
  45. 45.
    —: The reversible reaction of Hg(II) and double stranded polynucleotides, a step-function theory and its significance. Biochim. Biophys. Acta 68, 240 (1963).CrossRefGoogle Scholar
  46. 46.
    Kawade, Y.: The interaction of mercuric chloride with RNA and polynucleotides. Biochem. Biophys. Res. Commun. 10, 204 (1963).CrossRefGoogle Scholar
  47. 47.
    Khalil, F. L., and T. L. Brown: Infrared spectra of adenosinetriphosphate complexes in 2H2O solution. J. Am. Chem. Soc. 86, 5113 (1964).CrossRefGoogle Scholar
  48. 48.
    Khan, T. M., and A. E. Martell: Metal chelates of ADP and AMP. J. Am. Chem. Soc. 84, 3037 (1962).CrossRefGoogle Scholar
  49. 49.
    — — Metal chelates of ATP. J. Phys. Chem. 66, 10 (1962).CrossRefGoogle Scholar
  50. 50.
    Larsson-Raznikiewicz, M., and B. G. Malmström: The metal-ion activation of 3-phosphoglycerate kinase in correlation with metal binding studies. Arch. Biochem. Biophys. 92, 94 (1961).CrossRefGoogle Scholar
  51. 51.
    Li, N. C., R. C. Scruggs, and E. D. Becker: Proton, magnetic resonance of aminoacids, peptides and their metal complexes. J. Am. Chem. Soc. 84, 4650 (1962).CrossRefGoogle Scholar
  52. 52.
    Lipsett, M. N.: Aggregation of guanine oligoribonucleotides and the effect of mercuric salts. J. Biol. Chem. 239, 1250 (1964).Google Scholar
  53. 53.
    McCormick, W. G., and B. H. Levedahl: Rotary dispersion of inosinetriphosphate and the influence of metals on ITP and ATP. Biochim. Biophys. Acta 34, 303 (1959).CrossRefGoogle Scholar
  54. 54.
    Mahler, H. R., and E. H. Cordes: Biological Chemistry, p. 164–172. New York: Harper & Row, 1966.Google Scholar
  55. 55.
    —, and G. Dutton: Nucleic acid interactions. V Effect of cylcoboxine: J Mol. Biol. 10, 157 (1964).CrossRefGoogle Scholar
  56. 56.
    —, and B. D. Mehrotra: Effects of deuterium on the thermal transition of nucleic acids. Biochim. Biophys. Acta 68, 199 (1963).CrossRefGoogle Scholar
  57. 57.
    Maling, J. E., L. T. Taskovich, and M. S. Blois Jr.: Electron spin resonance in ATP and RNA. Biophys. J. 3, 79 (1963).Google Scholar
  58. 58.
    Marmur, J., R. Rownd, and C. L. Schildkraut: Denaturation and renaturation of DNA. Proc. Nucleic Acid Res. 1, 231 (1963).CrossRefGoogle Scholar
  59. 59.
    Moll, H., P. W. Schneider u. H. Brintzinger: Zum Mechanismus der Metallionen-katalysierten Hydrolyse von ATP II. Reaktionsverlauf in H218O. Helv. Chim. Acta 47, 1837 (1964).CrossRefGoogle Scholar
  60. 60.
    Nandi, U. S., J. C. Wang, and N. Davidson: Separation of DNA by Hg2+ binding and Cs2SO4 density gradient centrifugation. Biochemistry 4, 1687 (1965).CrossRefGoogle Scholar
  61. 61.
    Newton, T. W., and G. M. Arcand: A spectrophotometric study of the complex formed between cerous and sulfate ions. J. Am. Chem. Soc. 75, 2449 (1953).CrossRefGoogle Scholar
  62. 62.
    O'sullivan, W. J., and D. D. Perrin: The stability constants of metal-adenine nucleotide complexes. Biochemistry 3, 18 (1964).CrossRefGoogle Scholar
  63. 63.
    Patten, R. A., and W. Gordy: Electron spin resonance investigations of radiation induced free radicals in DNA and RNA at low temperatures: effect of water. Nature 201, 361 (1964).CrossRefGoogle Scholar
  64. 64.
    Phillips, R. S. J.: Adenosine and the adenine nucleotides, ionization, metal complex formation and conformation in solution. Chem. Rev. 66, 501 (1966).CrossRefGoogle Scholar
  65. 65.
    Pluripharm, S. a. r. l.: Fr. M 3542 (ref. CA 64, 6417c (1966)). Metal derivatives of uracil.Google Scholar
  66. 66.
    Rechnitz, G. A.: Progress in cation sensitive glass electrodes. Anal. Chem. 37, 29A (1965).CrossRefGoogle Scholar
  67. 67.
    —, and H. F. Hameka: A theory of glass electrode response. Z. Anal. Chem. 214, 252 (1965).CrossRefGoogle Scholar
  68. 68.
    — and G. C. Kugler: Transient phenomena at glass electrodes. Anal. Chem. 39, 1682 (1967).CrossRefGoogle Scholar
  69. 69.
    Reinert, H.: Stabilitätskonstanten einiger Purin-Metallkomplexe. Abhandl. Deut. Akad. Wiss. Berlin, Kl. Med. 373 (1964).Google Scholar
  70. 70.
    Schneider, P. W. u. H. Brintzinger: Zum Mechanismus der Metallionen-katalysierten Hydrolyse von Adenosintriphosphat (ATP). I. Helv. Chim. Acta 47, 1717 (1964).CrossRefGoogle Scholar
  71. 71.
    — — u. H. Erlenmeyer: Zur Struktur der ATP-Komplexe zweiwertiger Kationen. IV Koordinative Besetzung des Adeninringes. Helv. Chim. Acta 47, 992 (1964).CrossRefGoogle Scholar
  72. 72.
    Schneider, E., and C. A. Price: Decreased RNA levels: possible cause of growth inhibition in zinc deficiency. Biochim. Biophys. Acta 55, 406 (1962).CrossRefGoogle Scholar
  73. 73.
    Schubert, J.: Measurement of complex ion stability by the use of ion exchange resins. Methods Biochem. Analy. 3, 247 (1956).CrossRefGoogle Scholar
  74. 74.
    Sheard, B., S. H. Miall, A. R. Peacocke, I. O. Walker, and R. E. Richards: Proton magnetic relaxation studies of the binding of manganese ions to E. coli ribosomes. J. Mol. Biol. 28, 389 (1967).CrossRefGoogle Scholar
  75. 75.
    Shin, Y. A., and G. L. Eichhorn: Interactions of metal ions with polynucleotides and related compounds. XI The reversible unwinding and rewinding of DNA by Zn2+ ions through temperature manipulation. Biochemistry 7, 1026 (1968).CrossRefGoogle Scholar
  76. 76.
    Sigel, H.: Komplexbildung von Nucleinbasen mit Cu2+., Europ. J. Biochem 3, 530 (1968).CrossRefGoogle Scholar
  77. 77.
    —, K. Becker, and D. B. McCormick: Ternary complexes in solution. Influence of 2,2′-bipyridyl on the stability of 1∶1 complexes of Co2+, Ni2+, Cu2+ and Zn2+ with hydrogen phosphate, AMP and ATP,, Biochim. Biophys. Acta 148, 655 (1967).Google Scholar
  78. 78.
    —, u. H. Erlenmeyer: Über Struktur und Aktivität der den H2O2-Zerfall katalysierenden Cu2+-Komplexe. IV Katalytisches und peroxidatisches Verhalten von Cu2+-Komplexen mit Adenin-Nukleotiden und DNA. Helv. Chim. Acta 49, 1266 (1966).CrossRefGoogle Scholar
  79. 79.
    Sillen, L. G., and A. E. Martell: Stability constants of metal-ion complexes. The Chemical Society London, 1964.Google Scholar
  80. 80.
    Simpson R. B.: Association constants of methylmercuric ions with nucleosides. J. Am. Chem. Soc. 86, 2059 (1964).CrossRefGoogle Scholar
  81. 81.
    Scent-Gyorgyi, H.: Bioenergetics, p. 64. New York: Academic Press 1957.Google Scholar
  82. 82.
    Tetas, M., and J. M. Lowenstein: The effect of bivalent metal ions on the hydrolysis of ADP and ATP. Biochemistry 2, 350 (1963).CrossRefGoogle Scholar
  83. 83.
    Thomas, C. A.: The interaction of HgCl2 with sodium thymonucleate. J. Am. Chem. Soc., 76, 6032 (1954).CrossRefGoogle Scholar
  84. 84.
    Tu, A. T., and J. A. Reinosa: The interaction of Ag+ with guanosine, GMP, and related compounds. Determination of possible sites of complexing. Biochemistry 5, 3375 (1966).CrossRefGoogle Scholar
  85. 85.
    Venner, H., and C. Zimmer: Studies on nucleic acids VIII Changes in the stability of DNA secondary structure by interaction with divalent metal ions. Biopolymers 4, 321 (1966).CrossRefGoogle Scholar
  86. 86.
    Wacker, W. E. C.: Nucleic acids and metals III. Changes in nucleic acid, protein, and metal content as a consequence of zinc deficiency in E. gracilis. Biochemistry 1, 859 (1962).CrossRefGoogle Scholar
  87. 87.
    —: Nucleic acids and metals. J. Biol. Chem. 234, 3257 (1959).Google Scholar
  88. 88.
    Walaas, E.: Stability constants of metal complexes with mononucleotides. Acta Chem. Scand. 12, 528 (1958).Google Scholar
  89. 89.
    Ward, R. L., and J. A., Happe: 35Cl NMR studies of zinc adenosine diphosphate complexes. Biochem. Biophys. Res. Commun. 28, 785 (1967).CrossRefGoogle Scholar
  90. 90.
    Walsh, W. M., Jr., L. W. Rupp, and B. J. Wyluda: Paramagnetic resonance studies of magnetic ions bound in nucleic acid pseudo crystals. Proc. First Intern. Conf. Paramagnetic Resonance 2, 836 (1963).Google Scholar
  91. 91.
    —, R. G. Shulman, and R. D. Heidenreich: Ferromagnetic inclusions in nucleic acid samples. Nature 192, 1041 (1961).CrossRefGoogle Scholar
  92. 92.
    Weiss, R. u. F. Hein: Die komplexchemischen Eigenschaften von 4,5-diamino-6-substituierten Pyrimidinen gegenüber Cu, Co, und Ni. Z. Physiol. Chem. 317, 95 (1960).Google Scholar
  93. 93.
    — u. H. Venner: Das komplexchemische Verhalten einfacher Purinderivate gegenüber Cu-Ionen. Z. Physiol. Chem. 317, 82 (1960).Google Scholar
  94. 94.
    —: Das komplexchemische Verhalten von Hydroxypurinen gegenüber Cu (II). Z. Physiol. Chem. 340, 138 (1965).Google Scholar
  95. 95.
    Weitzel, G. u. T. Spehr: Zink-Komplexe von Purinen, Nucleosiden und Nucleotiden. Z. Physiol. Chem. 313, 212 (1958).Google Scholar
  96. 96.
    Weser, U.: Chemistry and structure of some borate, polyol compounds of biochemical interest. Struct. Bonding II, 160 (1967).Google Scholar
  97. 97.
    —: Chelation of boric acid with some nucleosides. Z. Naturforsch. 22B, 457 (1967).Google Scholar
  98. 98.
    —: Stimulation of rat liver RNA synthesis by borate. Proc. Soc. Exptl. Biol. Biol. Med. 126, 669 (1967).Google Scholar
  99. 99.
    Weser, U.: Einfluß von Borat und Germanat auf die RNA-Biosynthese. Z. Physiol. Chem. (1968) in press.Google Scholar
  100. 100.
    Weser, U.: to be published.Google Scholar
  101. 101.
    Writh, H. T., and N. Davidson: Mercury(II) complexes of guanidine and ammonia, and a general discussion of the complexing of mercury(II) by nitrogen bases. J. Am. Chem. Soc. 86, 4325 (1964).CrossRefGoogle Scholar
  102. 102.
    Yamane, T., and N. Davidson: On the complexing of DNA by mercuric ions. J. Am. Chem. Soc. 83, 2599 (1961).CrossRefGoogle Scholar
  103. 103.
    —: Note on the spectra of the Hg2+ and Ag+ complexes of some polyribonucleotides and RNA. Biochim. Biophys. Acta 55, 780 (1962).CrossRefGoogle Scholar
  104. 104.
    Yatsimiriskii, K. B., and E. E. Kriss: Reaction of nucleic acids with metals. Mol. Osn. Zhiznennykh Protsessov 47 (1966).Google Scholar
  105. 105.
    —, and T. I. Akhrameeva: complex formation of Cu ions with DNA. Dokl. Akad. Nauk. SSSR 168, 840 (1966).Google Scholar
  106. 106.
    —, B. I. Gol'dshtein, and V. V. Gerasimova: Determination of the location of iron binding in its complexes with DNA. Ukr. Khim. Zh. 32, 1031 (1966).Google Scholar
  107. 107.
    Zakharenko, E. T., and Y. U. Sh. Moshovskii: Binding of Cu2+ and Cd2+ ions by DNA and its degradation products. Biofizika 11, 945 (1966).Google Scholar
  108. 108.
    Zubay, G., and P. Doty: Nucleic acid interactions with metal ions and amino acids. Biochim. Biophys. Acta 29, 47 (1958).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • U. Weser
    • 1
    • 2
  1. 1.Department of ChemistryIndiana UniversityBloomingtonUSA
  2. 2.Physiologisch-Chemisches Institut der Universität TübingenGermany

Personalised recommendations