Advertisement

Biochemical aspects of iron-sulfur linkage in non-heme iron protein, with special reference to “Adrenodoxin”

  • T. Kimura
Conference paper
Part of the Structure and Bonding book series (STRUCTURE, volume 5)

Keywords

Electron Paramagnetic Resonance Spectrum Electron Paramagnetic Resonance Signal Biochemical Aspect Ferrous Ammonium Sulfate Partial Specific Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

AS

ammonium sulfate

DEAE-cellulose

diethyl-aminoethyl-cellulose

NADPH

reduced nicotinamide adenine dinucleotide phosphate

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atherton, N. M., K. Garbett, R. D. Gillard, R. Mason, S. J. Mayhew, J. L. Peel, and J. E. Stangroom: Spectroscopic investigation of rubredoxin and ferredoxin. Nature 212, 590 (1966).CrossRefGoogle Scholar
  2. 2.
    Bachmayer, H., and K. T. Yasunobu: The amino acid sequence of micrococcus aerogenes rubredoxin. Biochem. Biophys. Res. Commun. 26, 435 (1967).CrossRefGoogle Scholar
  3. 3.
    —, L. H. Piette, and K. T. Yasunobu: The binding sites of iron in rubredoxin. Proc. Natl. Acad. Sci. U.S. 57, 122 (1967).CrossRefGoogle Scholar
  4. 4.
    Bachofen, R., and D. I. Arnon: Crystalline ferredoxin from the photosynthetic bacterium chromatium. Biochim. Biophys. Acta 120, 259 (1966).CrossRefGoogle Scholar
  5. 5.
    Bayer, E., D. Josef, P. Krauss, H. Hagenmaier, A. Röder u. A. Trebst: Abbau und Resynthese des Aktiventrums vom Pflanzenferredoxin. Biochim. Biophys. Acta 143, 435 (1967).CrossRefGoogle Scholar
  6. 6.
    —, and N. Parr: Eliminierung von Schwefelwasserstoff aus Ferredoxin und Cysteinmethylester. Angew. Chem. 78, 824 (1966).CrossRefGoogle Scholar
  7. 7.
    —, and B. Kazmaier: Aufbau des Ferredoxins, des Wirkstoffes, der Assimilations-Vorgänge. Arch. Pharm. 298, 196 (1965).CrossRefGoogle Scholar
  8. 8.
    Bearden, A. J., T. H. Moss, R. G. Bartsh, and M. A. Cusanovich: Mössbauer spectroscopy studies of chromatium non-heme iron protein. In: Non-heme iron proteins. p. 87; A. San Pietro, ed. Yellow Springs, Ohio: Antioch Press 1965.Google Scholar
  9. 9.
    Beinert, H.: EPR spectroscopy in the detection, study and identification of protein-bound non-heme iron. In: Non-heme iron proteins, p. 23; A. San Pietro, ed. Yellow Springs, Ohio: Antioch Press 1965.Google Scholar
  10. 10.
    Blomstrom, D. C., E. Knight, Jr., W. D. Phillips, and J. F. Weiher: The nature of iron of ferredoxin. Proc. Natl. Acad. Sci U.S. 51, 1085 (1964).CrossRefGoogle Scholar
  11. 11.
    Brintzinger, H., G. Palmer, and R. H. Sands: On the ligand field of iron in ferredoxin from spinach chloroplasts and related non-heme iron protein. Proc. Natl. Acad. Sci. U.S., 55, 397 (1966).CrossRefGoogle Scholar
  12. 12.
    Buchanan, B.B.: The chemistry and function of ferredoxin. Struct. Bonding 1, 109 (1966).CrossRefGoogle Scholar
  13. 13.
    —, W. Lovenberg, and J. C. Rabinowitz: A comparison of clostridial ferredoxins. Proc. Natl. Acad. Sci. U.S. 49, 345 (1963).CrossRefGoogle Scholar
  14. 14.
    Cushman, D. W., R. L. Tsai, and I. C. Gunsalus: The ferroprotein component of a methylene hydroxylase. Biochem. Biophys. Res. Commun. 26, 577 (1967).CrossRefGoogle Scholar
  15. 15.
    Der Vartanian, D. V., W. H. Orme-Johnson, R. E. Hansen, and H. Beinert: Identification of sulfur as component of the EPR signal at g=1.94 by isotopic sulfur. Biochem. Biophys. Res. Commun. 26, 569 (1967).CrossRefGoogle Scholar
  16. 16.
    Dus, K., H. De Klerk, K. Sletten, and R. G. Bartsh: Chemical characterization of high potential iron proteins from chromatium and rhodopseudomonas gelatinosa. Biochim. Biophys. Acta 140, 291 (1967).Google Scholar
  17. 17.
    Fogo, J. K., and M. Popowsky: Spectrophotometric determination of hydrogen sulfide, methylene blue method. Anal. Chem. 21, 732 (1949).CrossRefGoogle Scholar
  18. 18.
    Fry, K. T., and A. San Pietro: Studies on photosynthetic pyridine nucleotide reductase. Biochem. Biophys. Res. Commun. 9, 218 (1962).CrossRefGoogle Scholar
  19. 19.
    Gewitz, H. S., u. W. Völker: Über die Atmungsfermente der Chlorella. Z. Physiol. Chem. 330, 124 (1962).Google Scholar
  20. 20.
    Gibson, J. F., D. O. Hall, J. H. M. Thornley, and F. R. Whatley: The iron complex in spinach ferredoxin. Proc. Natl. Acad. Sci. U.S. 56, 987 (1966).CrossRefGoogle Scholar
  21. 21.
    Hong, J. S., and J. C. Rabinowitz: Preparation and properties of clostridial apoferredoxins. Biochem. Biophys. Res. Commun. 29, 246 (1967).CrossRefGoogle Scholar
  22. 22.
    Kawamura, S., Y. Otsuji, T. Nakabayashi, T. Kitao, and J. Tsurugi: Aralkyl hydrodisulfides. IV. The reaction of benzyl hydrosdisulfide with several nucleophiles. J. Org. Chem. 30, 2711 (1965).CrossRefGoogle Scholar
  23. 23.
    Keresztes-Nagy, S., and E. Margoliash: Preparation and characterization of alfalfa ferredoxin. J. Biol. Chem. 241, 5955 (1966).Google Scholar
  24. 24.
    Kimura, T.: In: A symposium on biogenesis and action of steroid hormones, Yonago, Japan, August, 1967, in press.Google Scholar
  25. 25.
    Kimura, T. In: A symposium on function of adrenal cortex, Gainesville, Florida, U.S.A., November, 1966, in press.Google Scholar
  26. 26.
    —: Redox components of adrenal steroid hydroxylase. In: biological and chemical aspects of oxygenases, p. 179. K. Bloch and O. Hayaishi, ed. Tokyo: Maruzen 1966.Google Scholar
  27. 27.
    —: Studies on steroid hydroxylases. J. Japan. Biochem. 38, 209 (1966).Google Scholar
  28. 28.
    —, and H. Ohno: Preparation of testis non-heme iron protein and substitution for adrenodoxin by various non-heme iron proteins in steroid 11 β-hydroxylation. J. Biochem. 63, 716 (1968).Google Scholar
  29. 29.
    —, and K. Suzuki: Components of the electron transport system in adrenal steroid hydroxylase. J. Biol. Chem. 242, 485 (1967).Google Scholar
  30. 30.
    —: Enzymatic reduction of non-heme iron protein (adrenodoxin) by reduced nicotinamide adenine dinucleotide phosphate. Biochem. Biophys. Res. Commun. 20, 373 (1965).CrossRefGoogle Scholar
  31. 31.
    Lovenberg, W., B. B. Buchanan, and J. C. Rabinowitz: Studies on the chemical nature of clostridial ferredoxin. J. Biol. Chem. 238, 3899 (1963).Google Scholar
  32. 32.
    —, and B. E. Sobel: Rubredoxin: A new electron transfer protein from clostridium pasteurianum. Proc. Natl. Acad. Sci. U. S. 54, 193 (1965).CrossRefGoogle Scholar
  33. 33.
    Malkin, R., and J. C. Rabinowitz: Additional observations on the chemistry of clostridial ferredoxin. Biochemistry 5, 1262 (1966).CrossRefGoogle Scholar
  34. 34.
    —: Non-heme iron electron-transfer proteins. Ann. Rev. Biochem. 36, 113 (1967).CrossRefGoogle Scholar
  35. 35.
    —: The reactivity of clostridial ferredoxin with iron chelating agents and 5,5′-dithio-bis-2-nitrobenzoic acid. Biochemistry 6, 3880 (1967).CrossRefGoogle Scholar
  36. 36.
    Massey, V.: Studies on succinic dehydrogenase. VII. Valency state of the iron in beef heart succinic dehydrogenase. J. Biol. Chem. 229, 763 (1957).Google Scholar
  37. 37.
    —: The role of iron in beef-heart succinic dehydrogenase, Biochim Biophys. Acta 30, 500 (1958).CrossRefGoogle Scholar
  38. 38.
    Matsubara, H., R. M. Sasaki, and R. K. Chain: The amino acid sequence of spinach ferredoxin. Proc. Natl. Acad. Sci. U. S. 57, 439 (1967).CrossRefGoogle Scholar
  39. 39.
    Miller, R. W., and V. Massey: Dihydroorotic dehydrogenase. I. Some properties of the enzyme. J. Biol. Chem. 240, 1453 (1965).Google Scholar
  40. 40.
    Nagai, J., and K. Bloch: Enzymatic desaturation of stearyl acyl carrier protein. J. Biol. Chem. 241, 1925 (1966).Google Scholar
  41. 41.
    —: Synthesis of oleic acid by euglena gracilis. J. Biol. Chem. 240, PC3702 (1965).Google Scholar
  42. 42.
    Nakabayashi, T., J. Tsurugi, S. Kawamura, T. Kitao, M. Ui, and M. Nose: Aralkyl hydrodisulfides. VII. The reaction with trisubstituted phosphines. J. Org. Chem. 31, 4174 (1966).CrossRefGoogle Scholar
  43. 43.
    Ohno, H., K. Suzuki, and T. Kimura: A non-heme iron protein from pig testis and its substitution for adrenal non-heme iron protein (adrenodoxin) in steroid 11β-hydroxylation. Biochem. Biophys. Res. Commun. 26, 651 (1967).CrossRefGoogle Scholar
  44. 44.
    Omura, T., R. Sato, D. Y. Cooper, O. Rosenthal, and R. W. Estabrook: Function of cytochrome P-450 in microsomes. Federation Proc. 24, 1181 (1965).Google Scholar
  45. 45.
    —, E. Sanders, D. Y. Cooper, and R. W. Estabrook: Isolation of adrenal cortex non-heme iron protein. Methods in Enzymol., vol. 10 p. 362. New York: Academic Press 1967.Google Scholar
  46. 46.
    —, and R. W. Estabrook: Isolation from adrenal cortex of a non-heme iron protein and a flavoprotein functional as a reduced triphosphopyridine nucleotidecytochrome P-450 reductase. Arch. Biochem. Biophys. 117, 660 (1966).CrossRefGoogle Scholar
  47. 47.
    —, D. Y. Cooper, O. Rosenthal, and R. W. Estabrook: Isolation of a non-heme iron protein of adrenal cortex functional as a TPNH-flavoprotein-cytochrome P-450 reductase for hydroxylation reaction. In: Non-heme iron proteins, p. 401; A. San Pietro, ed. Yellow Springs, Ohio: Antioch Press 1965.Google Scholar
  48. 48.
    Palmer, G.: The effect of the Fe57 hyperfine interaction on the EPR spectrum of spinach ferredoxin. Biochem. Biophys. Res. Commun. 27, 315 (1967).CrossRefGoogle Scholar
  49. 49.
    —, H. Brinzinger, and R. W. Estabrook: Spectroscopic studies on spinach ferredoxin and adrenodoxin. Biochemistry 6, 1658 (1967).CrossRefGoogle Scholar
  50. 50.
    —, and R. H. Sands: On the magnetic resonance of spinach ferredoxin. J. Biol. Chem. 241, 253 (1966).Google Scholar
  51. 51.
    —, and L. E. Mortenson: Electron paramagnetic resonance study on the ferredoxin from clostridium pasteurianum. Biochem. Biophys. Res. Commun. 23, 357 (1966).CrossRefGoogle Scholar
  52. 52.
    Peterson, J. A., D. Basu, and M. J. Coon: Enzymatic ω-oxidation. 1. Electron carrier in fatty acid and hydrocarbon hydroxylation. J. Biol. Chem. 241, 5162 (1966).Google Scholar
  53. 53.
    —, M. Kusunose, E. Kusunose, and M. J. Coon: Enzymatic ω-oxidation. II. Function of rubredoxin as the electron carrier in ω-hydroxylation. J. Biol. Chem. 242, 4334 (1967).Google Scholar
  54. 54.
    Phillips, W. D., E. Knight, Jr., and D. C. Blomstrom: Fe57 Mössbauer spectroscopy and some biological applications. In: Non-heme iron proteins, p. 69; A San Pietro, ed. Yellow Springs, Ohio: Antioch Press 1965.Google Scholar
  55. 55.
    Rieske, J. S., D. H. Maclennan, and R. Coleman: Isolation and properties of an iron-protein from the (reduced-coenzyme Q)-cytochrome c reductase complex of the respiratory chain. Biochem. Biophys. Res. Commun. 15, 338 (1964).CrossRefGoogle Scholar
  56. 56.
    San Pietro, A.: Non-heme iron proteins. Yellow Springs, Ohio: Antioch Press 1965.Google Scholar
  57. 57.
    Shethna Y. I., P. W. Wilson, R. Hansen, and H. Beinert: Identification by isotopic substitution of the EPR signal at g=1.94 in a non-heme iron proteni from Azotobacter. Proc. Natl. Acad. Sci. U.S. 52, 1263 (1964).CrossRefGoogle Scholar
  58. 58.
    Sobel, B. E., and W. Lovenberg: Characteristics of clostridium pasteurianum ferredoxin in oxidation-reduction reactions. Biochemistry 5, 6 (1966).CrossRefGoogle Scholar
  59. 59.
    Suzuki, K.: Sulfhydryl groups of iron environment in non-heme iron protein (adrenodoxin) as an oxidation-reduction component of steroid 11 β-hydroxylase from adrenal mitochondria. Biochemistry 6, 1335 (1967).CrossRefGoogle Scholar
  60. 60.
    —, and T. Kimura: An iron protein as a component of steroid 11 β-hydroxylase complex. Biochem. Biophys. Res. Commun., 19, 340 (1965).CrossRefGoogle Scholar
  61. 61.
    —: Detection of labile sulfide in serum albumin. Biochem. Biophys. Res. Commun. 28, 514 (1967).CrossRefGoogle Scholar
  62. 62.
    Suzuki, K. T. Kimura unpublished data.Google Scholar
  63. 63.
    Tagawa, K., and D. I. Arnon: Ferredoxin as electron carriers in photosynthesis and its biological production and consumption of hydrogen gas. Nature 195, 537 (1962).CrossRefGoogle Scholar
  64. 64.
    Tanaka, M., A. M. Benson, H. F. Mower, and K. T. Yasunobu: A proposed structure of C. pasteurianum ferredoxin. In: Non-heme iron proteins, p. 221; A. San Pietro, ed. Yellow Springer, Ohio: Antioch Press 1965.Google Scholar
  65. 65.
    —, T. Nakashima, A. Benson, H. F. Mower, and K. T. Yasunobu The amino acid sequence of clostridium pasteurianum ferredoxin. Biochem. Biophys. Res. Commun. 16, 422 (1964).CrossRefGoogle Scholar
  66. 66.
    —: The amino acid sequence of clostridium pasteurianum ferredoxin. Biochemistry, 5, 1666 (1966).CrossRefGoogle Scholar
  67. 67.
    Vallee, B. L., and D. D. Ulmer: Optical rotatory dispersion of iron proteins. In: Non-heme iron proteins, p. 43; A. San Pietro, ed. Yellow Springs, Ohio: Antioch Press 1965.Google Scholar
  68. 68.
    Watari, H., and T. Kimura: Study of the adrenal non-heme iron protein (adrenodoxin) by electron spin resonance. Biochem. Biophys. Res. Commun. 24, 106 (1966).CrossRefGoogle Scholar
  69. 69.
    Watari, H., T. Kimura, and A. Tasaki, Biochim. Biophys. Acta, to be published.Google Scholar
  70. 70.
    Yamano, T.: a personal communication.Google Scholar
  71. 71.
    Seventh international congress of biochemistry, Tokyo, Japan, 1967.Google Scholar
  72. 72.
    unpublished data from this laboratory.Google Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • T. Kimura
    • 1
  1. 1.Department of ChemistrySt. Paul’s UniversityNishi-Ikebukuro, TokyoJapan

Personalised recommendations