Skip to main content

A titration calorimetry study of a technical grade APG

  • Surfactant Colloids
  • Conference paper
  • First Online:
Trends in Colloid and Interface Science XII

Part of the book series: Progress in Colloid & Polymer Science ((PROGCOLLOID,volume 110))

Abstract

This paper reports titration microcalorimetric measurements on micellization of a technical grade alkyl polyglucoside (APG) surfactant. The dilution enthalpy was recorded at three different temperatures and the curves obtained were compared to those of pure β-octyl glucoside. For comparative purposes titration microcalorimetry was also conducted with the conventional nonionic surfactant octa (ethylene glycol) monododecyl ether and with the anionic surfactant sodium dodecylsulfate, SDS. The results indicate that, contrary to the alcohol ethoxylate, both glucoside surfactants undergo micellization without much loss of water of hydration. Compared to the pure octyl glucoside, the technical grade APG exhibited a lower cmc and a less endothermic enthalpy of micellization at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rosen MJ (1989) Surfactants and Interfacial Phenomena. Wiley, New York

    Google Scholar 

  2. Moroi Y (1992) Micelles: Theoretical and Applied Aspects. Plenum, New York

    Google Scholar 

  3. Zajac J, Chorro C, Lindheimer M, Partyka S (1997) J Phys Chem 13:1486–1495

    CAS  Google Scholar 

  4. Paula S, Sus W, Tuchten H, Blume A (1995) J Phys Chem 99:11742–11751

    Article  CAS  Google Scholar 

  5. Aratono M, Ohta A, Ikeda N, Matsubara A, Motomura K, Takiu T (1997) J Phys Chem B 101:3535–3539

    Article  CAS  Google Scholar 

  6. Zajac J, Chorro M, Chorro C (1995) Prog Colloid Polym Sci 98:199–302

    Google Scholar 

  7. Weckström K, Rosenholm JB (1997) J Chem Soc Faraday Trans 93:569–578

    Article  Google Scholar 

  8. Olofsson G (1985) J Phys Chem 89:1473–1477

    Article  CAS  Google Scholar 

  9. Birdi KS (1983) Colloid Polym Sci 26:45–48

    Article  Google Scholar 

  10. Andersson B, Olofsson G (1988) J Chem Soc Faraday Trans 84(1):4087–4095

    Article  CAS  Google Scholar 

  11. Lisi RD, Inglese A, Milioto A, Pellerito A (1997) Langmuir 13:192–202

    Article  Google Scholar 

  12. Gu G, Yan H, Chen W, Wang W (1996) J Colloid Interface Sci 178:614–619

    Article  CAS  Google Scholar 

  13. Johnson I, Olofsson G, Jönsson B (1987) J Chem Soc Faraday Trans 83(1):3331–3344

    Article  CAS  Google Scholar 

  14. Nusselder JJH, Engberts JBFN (1992) J Colloid Interface Sci 48:353–361

    Article  Google Scholar 

  15. Desnoyers JE, Perron G (1996) Langmuir 12:4044–4045

    Article  CAS  Google Scholar 

  16. Nilsson F (1996) INFORM 7:490–497

    Google Scholar 

  17. Kameyama K, Takagi T (1990) J Colloid Interface Sci 137:1–10

    Article  CAS  Google Scholar 

  18. Marl DB (1991) Tenside Surf Det 28:419–427

    Google Scholar 

  19. Förster T, Guckenbiehl, Hansen H, von Rybinski W (1996) Prog Colloid Polym Sci 101:105–112

    Article  Google Scholar 

  20. Mitchell DJ, Tiddy GJT, Waring L, Bostock T, Bcdonald MP (1983) J Chem Soc Faraday Trans 79:975–1000

    Article  CAS  Google Scholar 

  21. Hato M, Minamikawa H (1996) Langmuir 12:1658–1665

    Article  CAS  Google Scholar 

  22. Dupuy C, Auvray X, Petipas C, Rico-Lattes I, Lattes A (1997) Langmuir 13:3965–3967

    Article  CAS  Google Scholar 

  23. Crowe LM, Mouradian R, Crowe JH, Jackson SA, Womersely C (1984) Biochim Biophys Acta 769:141–150

    Article  CAS  Google Scholar 

  24. Nilsson F, Söderman O (1996) Langmuir 12:902–908

    Article  CAS  Google Scholar 

  25. Drummond CJ, Warr GG, Griesser F, Ninham BW, Evans DF (1985) J Phys Chem 89:2103–2107

    Article  CAS  Google Scholar 

  26. von Rybinski W (1996) Current Opinion Colloid Interface Sci 1:587–597

    Article  Google Scholar 

  27. Suurkuusk J, Wadsoe I (1982) Chem Scr 20:155–163

    CAS  Google Scholar 

  28. Bach J, Blandamer MJ, Burgess J, Cullis PM, Soldi LG, Bijma K, Engberts JBFN, Kooreman PA, Kacperska A, Rao KC, Subha MCS (1995) J Chem Soc Faraday Trans 91:1229–1235

    Article  CAS  Google Scholar 

  29. van Os NM, Daane GJ, Haandrikman G (1991) J Colloid Interface Sci 141:199–217

    Article  Google Scholar 

  30. Olofsson G, Wang G (to be published)

    Google Scholar 

  31. Desnoyers JE, Caron G, DeLisi R, Roberts D, Roux A, Perron G (1983) J Phys Chem 87:1397–1406

    Article  CAS  Google Scholar 

  32. Corkill JM, Goodman JF, Harrold SP (1964) Trans Faraday Soc 60:202–207

    Article  CAS  Google Scholar 

  33. Jönsson B, Lindman B, Holmberg K, Kronberg B (1998) Surfactants and Polymers in Aqueous Solution. Wiley, New York, Ch. 2

    Google Scholar 

  34. Balzer D (1996) Tenside Surf Det 33:102–110

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

G. J. M. Koper D. Bedeaux C. Cavaco W. F. C. Sager

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Dr. Dietrich Steinkopff Verlag GmbH & Co. KG

About this paper

Cite this paper

Jha, B.K., Svensson, M., Holmberg, K. (1998). A titration calorimetry study of a technical grade APG. In: Koper, G.J.M., Bedeaux, D., Cavaco, C., Sager, W.F.C. (eds) Trends in Colloid and Interface Science XII. Progress in Colloid & Polymer Science, vol 110. Steinkopff. https://doi.org/10.1007/BFb0118082

Download citation

  • DOI: https://doi.org/10.1007/BFb0118082

  • Published:

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-1117-0

  • Online ISBN: 978-3-7985-1653-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics