Advertisement

Rheology of suspensions stabilized by long grafted polymers

  • P. A. Nommensen
  • M. H. G. Duits
  • J. S. Lopulissa
  • D. van den Ende
  • J. Mellema
Rheology
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 110)

Abstract

The synthesis of colloidal silica spheres grafted with long poly-(dimethyl siloxane) chains as described in literature has been successfully reproduced. The particles have been elaborately characterized, using different techniques and taking advantage of the availability of the unreacted bare particles and free polymer. Rheological measurements were performed on dispersions in heptane, all made from a single stock. An effective volume fraction was defined, based on the viscosity at low concentrations. Low shear viscosities and linear viscoelastic properties were measured at effective volume fractions up to 0.81. A transition from liquid-like to solid-like behavior is observed at φ ≅ 0.60. Up to this volume fraction, the particles behave much like Brownian hard spheres. At higher concentrations, softness effects become noticeable. Here, also differences from otherwise comparable soft spheres become pronounced.

Key words

Dispersions silica particle polymer brush characterization rheology hard spheres 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D'Haene P (1992) PhD Thesis, Katholieke Universiteit Leuven, BelgiumGoogle Scholar
  2. 2.
    Buitenhuis J, Förster S (1997) J Chem Phys 107:262–272CrossRefGoogle Scholar
  3. 3.
    Stöber W, Fink A, Bohn E (1968) J Colloid Interface Sci 26:62–69CrossRefGoogle Scholar
  4. 4.
    Auroy P, Auvray L, Léger L (1992) J Colloid Interface Sci 150:187–194CrossRefGoogle Scholar
  5. 5.
    Castaing J-C, Allain C, Auroy P, Auvray L, Pouchelon A (1996) Europhys Lett 36:153–158CrossRefGoogle Scholar
  6. 6.
    Ketelson HA, Brook MA, Pelton RH (1995) Polym Adv Technol 6:335–344CrossRefGoogle Scholar
  7. 7.
    Ketelson HA, Brook MA, Pelton RH (1995) Chem Mater 7:1376–1383CrossRefGoogle Scholar
  8. 8.
    Edwards J, Lenon S, Toussaint AF, Vincent B (1984) Am Chem Soc Symp Ser 240:281–296Google Scholar
  9. 9.
    Witten T, Pincus P, Cates M (1986) Europhys Lett 2:137–140CrossRefGoogle Scholar
  10. 10.
    Quemada D (1977) Rheol Acta 16:82–94CrossRefGoogle Scholar
  11. 11.
    Phan SE, Russel WB, Cheng Z, Zhu J, Chain PM, Dunsmuir JH, Ottewill RH (1996) Phys Rev E 54:6633–6645CrossRefGoogle Scholar
  12. 12.
    Vander Werff JC, deKruif CG, Blom C, Mellema J (1989) Phys Rev A 39:795–807CrossRefGoogle Scholar
  13. 13.
    Mellema J (1997) Curr Opin Colloid Interface Sci 2:411–419CrossRefGoogle Scholar
  14. 14.
    Tschoegl NW (1990) In: The Phenomenological Theory of Linear Viscoelastic Behaviour. Springer, BerlinGoogle Scholar
  15. 15.
    D'Haene P, Mewis J (1994) Rheol Acta 33:165–174CrossRefGoogle Scholar
  16. 16.
    Zwanzig R, Mountain RD (1965) J Chem Phys 43: 4464–4471CrossRefGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1998

Authors and Affiliations

  • P. A. Nommensen
    • 1
  • M. H. G. Duits
    • 1
  • J. S. Lopulissa
    • 1
  • D. van den Ende
    • 1
  • J. Mellema
    • 1
  1. 1.Department of Applied Physics Rheology GroupUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations